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ABSTRACT. Purpose: We present a method that combines compressed sensing with parallel
imaging that takes advantage of the structure of the sparsifying transformation.

Approach: Previous work has combined compressed sensing with parallel imaging
using model-based reconstruction but without taking advantage of the structured
sparsity. Blurry images for each coil are reconstructed from the fully sampled center
region. The optimization problem of compressed sensing is modified to take these
blurry images into account, and it is solved to estimate the missing details.

Results: Using data of brain, ankle, and shoulder anatomies, the combination of
compressed sensing with structured sparsity and parallel imaging reconstructs
an image with a lower relative error than does sparse SENSE or L1 ESPIRIT, which
do not use structured sparsity.

Conclusions: Taking advantage of structured sparsity improves the image quality
for a given amount of data as long as a fully sampled region centered on the zero
frequency of the appropriate size is acquired.
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1 Introduction

Magnetic resonance imaging (MRI) is a ubiquitously used gross imaging modality due to its
ability to image with significant natural contrast (without any exogenous contrast agent) and
its complete lack of ionizing radiation. MRI acquires samples in the frequency domain. With
a fully sampled reconstruction, sufficient data are acquired to satisfy the Nyquist-Shannon
sampling theorem, and the image is reconstructed with a simple inverse fast Fourier transform.
Because MRI requires that the patient remains still during the scan, acquiring this amount of
data is especially challenging for three-dimensional (3D) MRI, which requires scan times up
to 10 min for conventional reconstruction. Two methods of accelerating MRI include parallel
imaging and compressed sensing. Parallel imaging uses multiple sensing coils (i.e., antennas)
to simultaneously image the subject from different vantage points.'” The unique information
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provided by each antenna can be used to interpolate missing Fourier values and reconstruct a
high-quality image. Compressed sensing relies on the knowledge that the image is sparse after
a sparsifying transformation. With combinations of these methods, MRI requires even fewer
samples for a high-quality image, which can be collected with an even faster scan.

3D MRI with compressed sensing and parallel imaging still requires ~30 s of scan time.
Although this is much faster than the conventional fully sampled acquisition, any further increase
in speed could make MRI even more robust to motion or increase patient throughput. In previous
work, we showed that compressed sensing could be accelerated with structured sparsity.** The
sparsifying transformations used with compressed sensing are commonly the wavelet®’ and/or
curvelet® transforms, which benefit from fast implementations.”'® Both the wavelet and curvelet
transforms apply a low-pass filter to the image; most natural images, and certainly anatomical
MR images, have high energy in the low frequencies. Thus, one would not expect the intensities
of the coefficients corresponding to these low frequencies to be sparse. In Refs. 4 and 5, Dwork
et al. modified the standard optimization problem solved for a compressed sensing reconstruction
to take this into account. By doing so, they generated images of higher quality for a given number
of samples.

In this work, we combine model-based parallel imaging'' with compressed sensing using
structured sparsity, and we show that we can recover high-quality images with MRI using even
fewer samples, which can be collected with a faster scan.

3

2 Methods

2.1 Background

With parallel MRI, multiple sensing coils are used to simultaneously collect data of a patient.
With model-based reconstruction, it is assumed that the sensitivity of each coil is known, which
specifies how well the coil senses from each point in space. The image is reconstructed by
solving the following least squares problem:

minimize |[MFSx — b||,, (1)

X
where x represents the image, || - ||, represents the ¢, norm, S is a block-column matrix such
that S = (M, 5@, ..., 5 ), ) is a diagonal matrix of complex values that represents the

sensitivity map of the i’th coil, C is the number of coils used for data collection,
F = diag(F,F,...,F) is a block-diagonal matrix that applies the FFT to each S()x product,
M = diag(M, M, ..., M) is a block-diagonal matrix, M represents the data sampling mask, and
b= (bM,p?, ..., b)) is a block-column matrix with b!) representing the data collected by
the i’th coil. When MEFS is full rank (either invertible or over-determined), then the image is
uniquely estimated by solving this equation. Equations of this form can be solved with the
conjugate gradient method'? or LSQR methods."?

When a single coil is used, one reconstructs an image using compressed sensing by solving
equations of the form

minimize (1/2)|MF¥*z - b3 + A||z|,, @)

where ¥ is the sparsifying transformation, W* is its adjoint, and A > 0 is a regularization
parameter. Note that W* need not be invertible; it can represent an overcomplete basis
(e.g., consisting of the wavelet and curvelet transformations). When A = MFY* satisfies the
restricted isometry property in levels, then the solution to Eq. (2) solves the corresponding sparse
signal recovery problem.'*!> Let z* be the solution to Eq. (2); then the image is reconstructed
with x* = P*z*.

Sparse SENSE combines model-based reconstruction with compressed sensing;'® the image
is reconstructed by solving the following optimization equation:

minimize (1/2)||MFSx - b||3 + A ¥x]|; .

Problems of this form can be solved with the fast iterative shrinkage threshold algorithm
(FISTA)."
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2.2 Model-Based Reconstruction with Compressed Sensing Using Structured
Sparsity

Rather than work with the analysis form of the optimization equation used with sparse

SENSE,'®!? we use the related synthesis formulation:***!

minimize (1/2)|MFSY¥*z — b||3 + 4| z]};- 3)

This equation can be modified with estimates of the low-pass filtered images as follows:

minimize (1/2)[[MF(S¥*z +x) = b|[3 + [|z]),, (4)

where xp, is a vector of low-frequency estimates (blurry images) of each coil. Because we do not
expect the low frequencies of the image to be sparse, we choose to satisfy the Nyquist—Shannon
sampling theorem for the low-frequency portion of the image. The low-frequency, blurry images
are estimated with x;, = F~'KgM_ b, where My, is a block-diagonal matrix of a repeated block
M; with values equal to 1 or O that isolates the low frequencies according to the two-level
sampling scheme of Ref. 22 and Ky is a repeated block-diagonal matrix that applies the
Kaiser-Bessel window® as in Refs. 4 and 5. By letting # = b — MFx;, = (I — MKgM, )b,
Eq. (5) becomes

minimize (1/2)[MFS®*z — {3 + 2z]). (5)

Equation (5) is the novel combination of parallel imaging and compressed sensing with
structured sparsity. Note that this equation is the same form as Eq. (3), with the only difference
being that b is replaced with §; it too can be solved with FISTA. Let z* be the solution to Eq. (5);
then the images of all coils are reconstructed according to x* = xy, + S¥*z*. Once the images of
all coils are reconstructed, the final image is reconstructed using the method of Roemer et al.**

The model-based reconstruction presented in Eq. (5) that combines parallel imaging with
compressed sensing using structured sparsity amounts to a three-step process for image recon-
struction: (1) estimate the blurry images x;,, (2) estimate the missing details by solving Eq. (5),
and (3) combine the reconstructions from all coils into a single image. For this approach, the
low-frequency region must be fully sampled.

3 Results

3.1 Experimental Setup

All experiments are from fully sampled data of anatomies that remain still. Fully sampled recon-
structions were generated by the method of Roemer et al.>* Results will be shown for data with a
brain, knee, ankle, and shoulder. The fully sampled reconstructions are compared to the recon-
structions from retrospectively undersampled data. All data were collected on Cartesian trajec-
tories with two dimensions of phase encodes and one dimension of readout. All processing in this
paper was conducted on individual slices. Sensitivity maps were estimated using the method
described in Ref. 25. The sampling patterns used were a variable density Poisson disc sampling
pattern (without directional variation) created according to Ref. 26; an example is shown in
Fig. 1. Unless otherwise stated, the sampling pattern is augmented with a centered fully sampled
region (FSR) [Fig. 1(b)]. After inverse Fourier transforming along the readout direction, the data
are placed in a k, k,, z hybrid domain where each slice (i.e., individual z locations) is then proc-
essed independently. We show results for individual slices from each dataset. Each equation was
solved with values of 4 equal to 0.0001, 0.0002, ..., 0.001, 0.002, ..., 0.01, 0.02, ..., 0.1, 0.2,
..., 1. Unless otherwise stated, the image that achieves the lowest relative error (RelErr) is
reported; RelErr is defined as

RelEr — |[truth — k - estimate|,
[[truth][,

) (6)
where the fully sampled reconstruction is the truth and the undersampled reconstruction is the

estimate. Note that, because the scaling of the reconstructed image is irrelevant, a scalar k that
minimizes the RelErr for each estimate is identified.
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(8  without FSR (b  with FSR

Fig. 1 Variable density Poisson disc sampling patterns (a) without and (b) with an FSR created
according to the discrete Daubechies-4 wavelet transform. Each white point represents a line of
data from the page that was collected. These sampling patterns create a sampling burden of 24%.

Results from parallel imaging with compressed sensing using structured sparsity are com-
pared with results from sparse SENSE'® and L1 ESPIRiT.”’

3.2 Results with Retrospective Downsampling

Figure 2 shows a comparison between the fully sampled reconstruction, sparse SENSE, and
parallel imaging with compressed sensing using structured sparsity for data of a sagittal slice
of an ankle collected with an eight-channel dedicated ankle coil array. The sampling pattern
had an acceleration factor of 6.25 (i.e., only 16% of the number of samples required to satisfy
the Nyquist-Shannon sampling theorem were collected). The discrete Daubechies-4 wavelet
transform was used as the sparsifying transformation.”® The RelErrs comparing the under-
sampled reconstructions and the fully sampled reconstruction show that structured sparsity
(RelErr = 0.096) is more similar to the fully sampled reconstruction than sparse SENSE
(RelErr = 0.0147) and L1 ESPIRIT (RelErr = 0.103). The difference images show that the errors

Fully-Sampled Recon Structured Sparsity Sparse SENSE L1 ESPIRIT

Relative Err: 0.096 Relative Err: 0.147 Relative Err: 0.103

|Difference| x 10

Fig. 2 Comparison of fully sampled reconstruction with reconstructions from undersampled data
for a sagittal slice of an ankle with the compressed sensing with structured sparsity presented in
this paper and the previously existing sparse SENSE and L1 ESPIRIT. The data collected had an
acceleration factor of 6.25. Differences with a fully sampled reconstruction are shown on the same
intensity scale. The RelErr is displayed for each reconstruction. Difference images, magnified by
10, are all shown on the same scale.
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Fully-Sampled Recon Structured Sparsity Sparse SENSE L1 ESPIRIT

Relative Err: 0.145 Relative Err: 0.152 Relative Err: 0.168
e S R

|Difference| x 10

Fig. 3 Comparison of fully sampled reconstruction with reconstructions from undersampled data
for an axial slice of a brain with the compressed sensing with structured sparsity presented in this
paper and the previously existing sparse SENSE and L1 ESPIRIT. The data collected had an
acceleration factor of 5.5. Differences with a fully sampled reconstruction are shown on the same
intensity scale. The RelErr is displayed for each reconstruction. Difference images are shown on
the same scale.

in sparse SENSE are not isolated to a small region, but are spread throughout the image. Though
the details remain visible with sparse SENSE, the low frequencies are highly corrupted.

Figure 3 shows a similar comparison between the fully sampled reconstruction, and recon-
structions from 18% of the fully sampled data using parallel imaging with compressed sensing
using structured sparsity, sparse SENSE, and L1 ESPIRIT for data of an axial slice of a brain
collected with an eight-channel birdcage coil. Again, the Daubechies-4 wavelet transform was
used as the sparsifying transformation. As with the ankle, parallel imaging and compressed sens-
ing with structured sampling (RelErr = 0.145) performs better than sparse SENSE (RelErr =
0.152) and L1 ESPIRIT (RelErr = 0.168).

Figure 4 shows a similar comparison between the fully sampled reconstruction and recon-
structions from 12% of the fully sampled data using parallel imaging with compressed sensing
using structured sparsity, sparse SENSE, and L.1 ESPIRIT for data of an axial slice of a shoulder
collected with a 16-channel dedicated shoulder array. The sparsifying transform for the structured
sparsity and sparse SENSE reconstruction was composed of both the wavelet and curvelet trans-
formations, as in Ref. 5. The top and bottom rows show the full image and an enlarged region,
respectively. As with the ankle and shoulder, compressed sensing with structured sparsity attains
a better RelErr than compressed sensing alone.

In addition to the ankle, brain, and shoulder data presented in this paper, we determined the
RelErr on six other images: two sagittal slices of two different knees using data from Ref. 29,
axial slices for the 8-channel and 32-channel brain data shared with Ref. 27, and three axial slices
of a brain for data collected by the authors. Table 1 shows the P values that result from a two-
sided Wilcoxon signed rank test evaluated on the improvements in RelErrs for all images.
Specifically, the test was performed on the differences between the RelErrs of parallel imaging
with compressed sensing using structured sparsity and each of the other methods (sparse SENSE
and L1 ESPIRIT). If there was negligible improvement, then the differences would be centered
around zero and the null hypothesis would be valid. Instead, for almost all cases, the null hypoth-
esis was rejected with a low P value, indicating a significant improvement with the use of
structured sparsity.

Figure 5 shows reconstructions for an axial slice of a brain for a variety of different sampling
burdens using a sparsifying transformation comprised of wavelets and curvelets. For these
images, we report the Pearson correlation coefficient (PCC).*® For this data, the more significant
improvement is achieved when the FSR is included in the sampling pattern; a more minor
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Fully-Sampled Recon  Structured Sparsity Sparse SENSE L1 ESPIRIT

Relative Err: 0.120
- g 1R .
o

Fig. 4 Comparison of fully sampled reconstruction with reconstructions from undersampled data
for an axial slice of a shoulder with the compressed sensing with structured sparsity presented
in this paper and the previously existing sparse SENSE and L1 ESPIRIT. The data collected had
an acceleration factor of over eight (a sampling fraction of 12%). The top row shows the image
reconstructions; the bottom row shows the region enclosed in the yellow box enlarged for improved
understanding of the details.

Table 1 P values for rejecting the null hypothesis.

Sample fraction 0.12 0.14 0.16 0.18 0.20 0.22 0.24
Sparse SENSE 0.0039 0.0195 0.0156 0.0273 0.0977 0.1289 0.3008
L1 ESPIRIT 0.0547 0.0391 0.0391 0.0391 0.0391 0.0195 0.0195
Sampling Burden: 16% 18% 20% 229, 24%

PCC: 0.9788 PCC: 0.9835, PCC: 0.9894\ PCC: 0.9868,

Without FSR
Sparse SENSE

Sparse SENSE

With FSR

Structured Sparsity

PCC: 0.9901

4

Fig. 5 Reconstructions of an axial slice of a brain. For all sampling burdens, the PCC with struc-
tured sparsity is the highest.
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improvement is achieved by taking advantage of structured sparsity. This trend is similar to that
of compressed sensing using structured sparsity without parallel imaging. In all cases, com-
pressed sensing with structured sparsity outperforms sparse SENSE. Note that compressed sens-
ing with structured sparsity achieves a PCC of 0.9892 with a sampling burden of 18%, which is
about what sparse SENSE with the FSR achieves with a sampling burden of 24%. This indicates
that one can accelerate the MRI scan by an additional 25% and achieve comparable or better
image quality when taking advantage of structured sparsity.

4 Conclusion

When compressed sensing with structured sparsity is combined with parallel imaging, it
achieves improved image quality over sparse SENSE (which is compressed sensing and
parallel imaging without structured sparsity). The vast majority of the benefit is due to a sampling
pattern that includes an FSR, centered on the zero frequency that satisfies the Nyquist—Shannon
sampling theorem for the low-frequency bins of the wavelet and curvelet sparsifying transfor-
mations. There is a small additional benefit by modifying the optimization problem to take the
structured sparsity into account due to the increased sparsity of the resulting optimization
variable. This benefit increases as the sampling pattern is reduced, corresponding to a faster
MRI scan.

This paper presented compressed sensing with structured sparsity in the context of a model-
based reconstruction.!! Compressed sensing with structured sparsity could also be integrated into
parallel imaging based on linear predictability,”' such as SPIRIT,**> ESPIRIT,”’ or P-LORAKS.*
We leave this pursuit as future work.
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No conflicts of interest, financial or otherwise, are declared by the authors.

Code and Data Availability

Matlab code used for this project with a sample dataset acquired from mriData.org,?® which is
shared at https://github.com/ndwork/picsWithStructuredSparsity.git. The data of the knee utilized
in this study were acquired from mriData.org. Some of the brain data utilized in this study
were shared with Ref. 27 and are available at https:/people.eecs.berkeley.edu/~mlustig/
Software.html. Other data that support the findings of this paper will be made available at
www.nicholasdwork.com.

Compliance with Ethical Standards

All procedures performed in studies involving human participants were in accordance with the
ethical standards of the Institutional and/or National Research Committee and with the 1964
Helsinki Declaration and its later amendments or comparable ethical standards. MR data of
humans were gathered with Institutional Review Board approval and Health Insurance
Portability and Accountability Act compliance. Informed consent was obtained from all individual
participants included in the study.
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methods are applied to prostate cancer research, other cancers, and metabolic diseases.
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