
Parallel Imaging and Compressed Sensing

Nicholas Dwork
c©2019

Abstract

This document provides an introduction to parallel imaging and compressed sensing in MRI.

1 Background

Magnetic Resonance Imaging is conventionally dependent on the Fourier transform. In this section, we will
define the Fourier transform (as used in this document, for there are several similar definitions) and list some
of its properties. For a more thorough review of the Fourier Transform and its applications, please review the
notes at http://nicholasdwork.com/teaching/1706ee102a/.

The Fourier Transform is defined as

f̂(k) = F{f}(k) =

∫ ∞
−∞

f(x) e−i2π kx dx.

The Fourier transform is a function F that accepts a function f as input and outputs another function f̂ .
The Fourier transform is invertible, and its inverse is

f(x) = F−1{f̂}(x) =

∫ ∞
−∞

f̂(k) ei2π kx dk.

There are many powerful theorems associated with the Fourier Transform. Here are a few:

• Convolution Theorem: F{f ∗ g} = f̂ ĝ. That is, the Fourier transform of f convolved with g equals
the Fourier transform of f multiplied by the Fourier transform of g. This is an extremely powerful
theorem. Convolution, which is difficult, is converted into multiplication, which is easy.

• Fourier Shift Theorem: F{f(x−∆)}(k) = e−i2π k∆ f̂(k).

• Suppose we are provided a set of values (. . . , f(−2∆), f(−∆), f(0), f(∆), f(2∆) . . .). Suppose further
that we would like the value of f(x) for some arbitrary value x. How well can we estimate this value?
Wonderfully, if f is sufficiently smooth, then we can determine f(x) perfectly!

Nyquist’s Theorem: Suppose f has a bandwidth of B, meaning that the support of f is a subset
of [−B,B]. Then f(x) can be determined perfectly as long as 2B < 1/∆ according to

f(x) =

∞∑
n=−∞

f(n∆) sinc

(
x− n∆

∆

)
.

The value 1/∆ is often called the sampling frequency. With this terminology, Nyquist’s theorem is
often stated as follows: a function f can be perfectly reconstructed as long as the sampling frequency
is greater than twice the bandwidth of the function. (Note that Nyquist’s theorem specifies a sufficient
condition but not a necessary one.)

The Fourier transform for a function f : RN → C and its inverse are defined as

f̂(k) = F{f}(k) =

∫ ∞
−∞

∫ ∞
−∞
· · ·
∫ ∞
−∞

f(x) e−i2π k·x dx

f(x) = F−1{f̂}(x) =

∫ ∞
−∞

∫ ∞
−∞
· · ·
∫ ∞
−∞

f̂(k) ei2π k·x dk,
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where x ∈ RN , and k ∈ RN . Here, · represents the dot product.

Note that
f̂(k) = F{f}(k) = FN{FN−1{· · · F2{F1{f}} · · · }(k), (1)

where Fi is the one-dimensional Fourier transform with respect to the ith argument. Equivalently, it is the
one-dimensional Fourier transform with respect to the ith dimension.

A hybrid space can be constructed by computing the Fourier Transform with respect to a strict subset of the
independent variables. For example,

h(kx, y) = F{f}(kx, y) =

∫ ∞
−∞

f(x, y) e−i2π kxx dx.

The Discrete Fourier Transform (DFT) for an N element vector f is1

f̂ = DFT{f}m =
1√
N

N−1∑
n=0

fn exp
(
−i2πmn

N

)
.

Note that the DFT is a linear combination and it can be represented by a matrix. We will denote this matrix
as F . Therefore, f̂ = Ff = DFT{f}. F is an invertible matrix; f = F−1f̂ . Actually, F is unitary; that is,
F−1 = FH , meaning its inverse is its Hermitian transpose (its conjugate transpose). The explicit expression
for the inverse is

DFT−1{f̂}n =
1√
N

N−1∑
m=0

f̂m exp
(
i 2π

mn

N

)
.

There are analogous theorems for the DFT as there are for the Fourier Transform.

• Convolution Theorem: DFT{f ~ g} = DFT{f} � DFT{g}. That is, the DFT of f circularly
convolved with g equals the Hadamaard (or point-wise) product of the DFT of f with the DFT of g.

• Shift Theorem: DFT{f(x−∆)}m = exp
(
i 2πm∆

N

)
DFT{f}m. Note that here, the shift is circular

(meaning that if it ends up at a coordinate off the vector, it wraps around).

The DFT serves as a useful numerical approximation of the Fourier transform, which is described in detail
here: http://nicholasdwork.com/tutorials/approxDFT.pdf.

2 Magnetic Resonance Imaging

At any point in time, the MRI machine acquires a data point which (approximately) adheres to the following
expression

s(t) =

∞y

−∞
M(r) exp(−i 2π k · r) dV, (2)

where kx(t) = γ/(2π)
∫ t

0
Gx(τ) dτ , ky(t) = γ/(2π)

∫ t
0
Gy(τ) dτ , and kz(t) = γ/(2π)

∫ t
0
Gz(τ) dτ . The scalar

γ is called the gyromagnetic ratio and is particular to the element imaged; for hydrogen in water, γ ≈ 42.5
MHz/T. You can see an explanation of where this expression comes from here: https://www.youtube.com/
watch?v=wrlQxlo0uT4. In (2), r = (x, y, z) ∈ R3, and k ∈ R3. This expression assumes ideal receiver coils
(or antennas) which do not distort the measurement at all. In reality, any antenna is (roughly) more sensitive
to elements nearer to it and less sensitive to elements farther away. This effect apodizes the object imaged
according to

s(t) =

∞y

−∞
ρ(r)M(r) exp(−i 2π k(t) · r) dV, (3)

where ρ : R3 → C is the coil sensitivity function.

Note that (3) is a Fourier Transform! That is, s(t) = F{ρM}(k(t)). Thus, the mathematics and theorems
of the Fourier Transform will be very useful for reconstructing MR imagery. Let’s consider an example.

1Note that this de�nition provides the nice property that the DFT is unitary. However, the scaling factor is usually di�erent
in numerical packages.
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Suppose we wanted to make a 100× 512× 512 volume. The scanning protocol will employ phase encodes in
y and z with readouts in x. Once the data is acquired, the volume can be reconstructed simply by using an
inverse 3D DFT!

But how long does it take? Suppose the scan employed a 15 ms repetition time. Then the total scan time
would be 512×512×10 ≈ 43 minutes! And that’s for only one scan; a medical protocol may require 10 scans.
This consumes the machine for too long and is uncomfortable for the patient. Thus, there is great interest
in reducing the time required to achieve scans of comparable quality. We will now discuss two methods for
doing so: Parallel Imaging and Compressed Sensing.

3 Parallel Imaging

The idea behind parallel imaging is that additional sensors (additional coils) provide us with additional in-
formation that we can use. This information should reduce the number of datapoints required to accurately
reconstruct the imagery. For the remainder of this discussion, ρ(c) will denote the sensitivity map of the
cth coil. Furthermore, we will limit the discussion to two-dimensional data. (The modification to higher
dimensions is methodical.)

3.1 Square Root of Sum-of-Squares

If the data is fully sampled, each coil receives data for a fully sampled image. This data can be used to
reconstruct a set of C images from C coils. A simple way to a get a descent reconstruction from these images
is to compute the square root of the sum-of-squares of each image as follows:

I =

√√√√ C∑
c=1

(I(c))2, (4)

where I(c) is the image of the cth coil.

This is an extremely computationally efficient method for combining the information from different coils.
However, it does not take advantage of the new information acquired with multiple coils to reduce the
number of data samples required. We will now discuss methods that do.

3.2 SMASH

Let ∆kpe/2 be the sampling frequency in y required to satisfy Nyquist’s theorem. With SMASH [1, 2],
the sampling frequency is set to ∆kpe, twice the sampling distance required. The SMASH reconstruction
algorithm will then attempt to synthesize the missing k-space coordinates.

SMASH makes two assumptions about the coil sensitivity maps:

1.
∑C
c=1 ρ

(c)(x, y) is constant in y, and

2. there exists a known a ∈ CC such that
∑C
c=1 ac ρ

(c)(x, y) ≈ exp (i∆kpe y/2).

With assumption 1,

C∑
c=1

s(c)(t) =

∞y

−∞
M(r) exp (−i2πr · k(t)) dV

= F (k(t)) .

That is, by summing the signals from all coils, we attain the Fourier value of the image at location k(t).

With assumption 2,

C∑
c=1

ac s
(c)(t) =

∞y

−∞
M(r) exp (−i2πr · (kx(t), ky(t) + ∆kpe/2)) dV

= F(M) (kx(t), ky(t) + ∆kpe/2) .

That is, by summing the signals with the coefficients from a, we get the value of the missing Fourier value!
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In the original SMASH, the coils were specially manufactured to satisfy the assumptions required. The results,
though ground breaking, retained a significant amount of aliasing. Moreover, it is laborious and restrictive to
make coils in such a particular way and require them to be placed in exact locations. This led to a version of
SMASH that includes an auto-calibration element.

3.3 Auto-SMASH

The goal of auto-SMASH [3], rather than determining the Fourier values of M is to estimate the Fourier
values of ρ(c)M for all c ∈ {1, 2, . . . , C}. The assumptions of SMASH are eliminated and the following
assumption is made:

• For each coil c, there exists a(c) ∈ CC×2 such that

C∑
ν=1

a
(c)
ν,1 skx,ky+∆kpe/2 + a

(c)
ν,2 skx,ky−∆kpe/2 = F{ρ(c)M} (kx, ky) ,

where skx,ky
is the signal at time corresponding to Fourier domain coordinate (kx, ky).

Instead of assuming prior knowledge of the values of a, auto-SMASH determines the values of a from the
data itself. Every other line of k-space is acquired except for the center, where three consecutive lines are
acquired. This additional row is called the auto-calibration row. One forms a linear system in a with these
three lines and solves it.

Once a is determined, the missing Fourier values for each coil are synthesized. The coils are then combined
into a single image, perhaps by using (4).

3.4 GRAPPA

In reality, there is nothing magical about the y direction. We could just as easily use the x direction with
auto-SMASH, or the diagonal direction. And this is the idea behind GRAPPA [4]. Rather than just using
the points above and below the missing k-space coordinate, all points in a neighborhood are used. GRAPPA
assumes that for each coil, there exists a set of coefficients a(c) ∈ CC×K such that

bK/2c∑
κx=−bK/2c

bK/2c∑
κy=−bK/2c

C∑
ν=1

a(c)
ν,κ s(kx + κx, ky + κy) = F{ρ(c)M}(kx, ky)

Again, a set of auto-calibration data is recorded. Instead of measuring a single additional line, though, an
entire region surrounding the 0 frequency is measured. This region is called the auto-calibration region. Like
auto-SMASH, a linear system in a is formulated with the auto-calibration region and is used to determine the
coefficients. Once determined, the missing Fourier values are synthesized.

3.5 Model-Based Reconstruction

Model-based reconstruction assumes something different entirely [5]. The assumption is that the coil sensitivity
maps {ρ(1), ρ(2), . . . , ρ(C)} are known. If known, then we can model the MRI system for the cth coil with the
following equation:

b(c) = DF diag(ρ(c))M + n(c).

Here, M is a vector that represents the image we would like to reconstruct. It is the column-extension of the
two-dimensional image. That is, it is the concatenation of the first column with the second, and then the
third, etc. The vector ρ is the sampled sensitivity map, F is the two-dimensional DFT matrix, and D is a
diagonal matrix that isolates which Fourier domain values were collected. The ith row of D corresponds to
the ith Fourier sample. Each row has exactly 1 non-zero value in it; the jth column has a value of 1, which
means that the ith row corresponds to the jth Fourier domain coordinate. The vector n(c) represents the
noise in the MR system, and it is dominated by Gaussian complex thermal noise.
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The equations of all coils can be combined into the following:
b(1)

b(2)

...
b(C)


︸ ︷︷ ︸

b

=


D

D
...
D



F

F
...
F




diag(ρ(1))
diag(ρ(2))

...
diag(ρ(C))


︸ ︷︷ ︸

A

M +


n(1)

n(2)

...
n(C)


︸ ︷︷ ︸

n

.

This is a linear system plus noise: AM = b + n. We want to find M that minimizes the difference between
AM and b.

If enough data points are collected, then A is tall and skinny. Barring extreme symmetry in the sensitivity
maps, an estimate of M can be found using the pseudo-inverse of A according to M̃ = A†b (as described
in Appendix A). However, this would require constructing the matrix A. This would consume a great deal
of memory and be inefficient. (The Fast Fourier Transform is an efficient algorithm for calculating the DFT,
and packages like Fastest Fourier Transform in the West take further advantage of hardware specifics [6].)
Instead of constructing A directly, then, one implements a function that accepts a vector and returns the
multiplication with A. The problem can then be solved with the LSQR algorithm [7] or the LSMR algorithm
[8]. To do so requires an implementation of both A and its Hermitian transpose. The following is an
implementation of A in Matlab along with a call to lsqr.

[ Ny Nx nCoils ] = size( kData ); % kData is the k-space data.

% Any point that isn’t collected is set to $0$

nb = sum( kData(:) ~= 0 ); % The number of elements in the data array

% It is assumed that a matrix rho is defined of size [ Ny Nx nCoils ] that

% indicates the coil sensitivity map at each location.

function out = applyA( in, type )

if type == ’transp’

% Code for Hermitian transpose goes here

else

M = reshape( in, [ Ny Nx ] );

out = zeros( nb, 1 );

nDataPerCoil = nb / nCoils;

for coil = 1 : nCoils

tmp = 1/sqrt(Ny*Nx) * fft2( rho(:,:,coil) .* M );

out( (coil-1) * nDataPerCoil + 1 : coil * nDataPerCoil ) = ...

tmp( kData ~= 0 );

end

out = out(:); % reformat out as a column vector

end

end

M0 = zeros( Ny, Nx );

M_hat = lsqr( applyA, b, [], [], [], [], M0(:) );

M_hat = reshape( M_hat, [ Ny Nx ] )

By exploiting the different measurements by the different coils, model-based reconstruction permits accurate
imaging with less samples than are required by Nyquist’s theorem.

4 Compressed Sensing

Instead of relying on multiple coils, perhaps we can rely on known properties of the final image to reduce the
number of data points required. This is the idea behind compressed sensing (sometimes called compressive
sampling).

Compressed sensing is the name of the following optimization problem:

minimize
x

‖x‖0

subject to (1/2) ‖Ax− b‖22 < σ
(5)
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