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The Euclidean Space
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Functions
A function is a mathematical machine

You input something
You get something out

As long as you input the same thing, you’ll always 
get the same thing out.

f(x)|{z}
output

input
function
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Example Function
The exponential function:

exp

exp(�1) = 0.3679

exp(0) = 1

exp(1) = 2.7183

exp(1.2) = 3.3201

5

A function maps inputs to outputs.  It converts 
     to          .

Inputs Outputs

f

x

f(x)

x

f(x)
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Note:  Not every function has an inverse function.  
An invertible function is a very special thing.

The inverse function converts all          in Outputs 
back to     in Inputs.

f�1

x

f(x)

x

f(x)

Inverse Function

7

Example Inverse Function
The inverse of the            function is the          function.

exp

exp(�1) = 0.3679

exp(0) = 1

exp(1) = 2.7183

exp(1.2) = 3.3201

log

log(0.3679) = �1

log(1) = 0

log(2.7183) = 1

log(3.3201) = 1.2
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Graphing a Function
Showing the points of a function in a Euclidean Plane

x

exp(x)
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Graphing a Function
Showing all the points of a function in a Euclidean Plane

x

exp(x)
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Vertical Line Test
If you draw a vertical line through the graph of a 
function, it will intersect at most one point.

x-2 2
0

8

exp(x)
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Equation of a Line
One way to represent a line is with a function of 
the form

f(x) = mx+ b

m is called the “slope” of the line.
b is called the “vertical intercept” of the line.

We can’t represent vertical lines this way.  We’ll 
see a more general representation later.
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Perpendicular
Two lines are perpendicular means that the angle 
between them is         radians.⇡/2
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Triangles
A shape with three sides.
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Similar Triangles
Two triangles that have the same angles are similar.
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The ratios of equivalent lengths of similar triangles are 
equal

a1
b1

c1 a2

b2

c2

a1
b1

=
a2
b2

a1
c1

=
a2
c2

b1
c1

=
b2
c2
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Equal and Opposite Angles
Opposite angles formed with straight lines are equal.
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A right triangle has one angle equal to

That angle is denoted with a square as shown

Right Triangle
⇡/2

The line opposite the         angle is called the
hypotenuse .

⇡/2
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Pythagorean Theorem
The lengths of the sides of a right triangle satisfy
the following formula

x

2 + y

2 = z

2

x

y

z
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The three angles of a triangle add up to !

!

!
!a

b

c

! + " + # = $
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Law of Sines

!

!
!a

b

c

a
sin(↵)

=
b

sin(�)
=

c
sin(�)
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Law of Cosines

!

!
!a

b

c

c2 = a2 + b2 � 2ab cos(�)

This is a generalization of the Pythagorean Theorem.
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Circle

r

(a, b)

A circle centered at (a,b) with radius r is the set of all 
points a distance r from (a,b).
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Equation of a Circle
Follows from the Pythagorean theorem.

(x � a)2 + (y � b)2 = r 2

The center  of the circle is located at (a,b).

    is called the circle’s radius.

      is called the diameter  of the circle.

r

2r
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The Unit Circle
The unit circle is a circle of radius 1 centered at (0,0).

x2 + y2 = 1

Graph of the unit circle

1
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Each point on the unit circle makes a right triangle
with a hypotenuse of length 1.

The Unit Circle

!

1
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Sine

sin (✓)

The Unit Circle

!

1
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Cosine

cos (! )

The Unit Circle

!

1
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The Unit Circle
!
cos (! )

sin

2
(! ) + cos

2
(! ) = 1

From the Pythagorean Theorem:

sin (✓)

29

The Number Pi - π
π is defined as

! =
Circumference of the Circle

Diameter of a Circle

It turns out that this number is the same for all circles!

⇡ ! 3.141592653
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Radians

where     is the arc length
               is in radians

l = r !

r!

l

l
!

There are 2π radians in a full revolution.
There are π radians in a half revolution.
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Degrees
There are 360˚ in a full revolution.

We will not use degrees very much in this class.

There are 180˚ in a half revolution.
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Vectors
A vector is an ordered finite list of numbers.

!

"
"
#

! 1.1
0.0
3.6

! 7.2

$

%
%
&

Example: (! 1.1, 0.0, 3.6, ! 7.2)

Example: 0

All the elements are 0.
The length is understood from context.
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Drawing Vectors in 2D

a
a =

!
4
1

"
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Vector Addition
Two vectors of the same size can be added together by 
adding corresponding components.

Example:

Example:

!

"
0
7
3

#

$ +

!

"
1
2
0

#

$ =

!

"
1
9
3

#

$

!
1
9

"
!

!
1
1

"
=

!
0
8

"
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Geometric Interpretation
Vectors add tip-to-tail.

a

ba + b
a

b b+ a
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Scalar Multiplication
Every element of the vector is multiplied by the
scalar (i.e. number)

Example:

(! 2)

!

"
1
9

! 6

#

$ =

!

"
! 2
! 18
12

#

$
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Geometric Interpretation

Vector is scaled by scalar multiplication.

a
1.5a
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Equation of a Line
Suppose that a is a point on the line and v is a 
vector parallel to the line.  The the line can be 
represented as

where t is any real number.

a
v

f(t) = a+ t v
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Length of a Vector
The length of a vector      , denoted by          , is

a

! a! 2a

kak2 =
!

a2
1 + a2

2 + á á á+ a2
n

a1

a2
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Dot Product

If       and       are vectors thena b

a áb = aT b = a1 b1 + a2 b2 + á á á+ an bn
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Perpendicular Vectors

Two vectors      and     are perpendicular if and only if a b

a áb = 0
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Equation of a Plane
A normal vector is a vector perpendicular to all points 
on a plane.

The equation of a plane is specified by a normal vector 
and a point on the plane.

The key is realizing how to 
write the equation of a plane 
using the dot product.
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Equation of a Plane

n á(p ! a) = 0

Suppose n is the normal vector of a plane and a is a 
point that lies in the plane.

a
p

n
Then any other point p in 
the plane satisfies
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Dot Product Properties

The angle between two vectors a,b is acute if and only if

a áb > 0

a · b < 0

The angle between two vectors a,b is obtuse if and only if
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Cross Product

If       and       are vectors with three elements thena b

a ! b =

!

"
a2b3 " b2a3

b1a3 " b3a1

a1b2 " a2b1

#

$

               is perpendicular to both      and     . a ! b a b
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Cross Product - Right Hand Rule

Thumb points in direction of 

x⇥ y

Curl fingers from vector     to     .x

y
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Cross Product and Parallel Vectors

The cross product of parallel vectors is 0.
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Note:  unless otherwise specified                        .

Size of a Vector

If       is a vector then its size isa

! a! =
!

a2
1 + a2

2 + á á á+ a2
n

! a! = ! a! 2
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Linear Combination

! 1, ! 2, . . . , ! n

Suppose                          are vectors of the same size.a1, a2, . . . , an

A linear combination of these vectors is an expression
of the form

! 1 a1 + ! 2 a2 + á á á+ ! n an

where                         are numbers.
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Span

Suppose                           are vectors of the same size.

The span of                                     is the set of all  
linear combinations of the vectors in the set.

a1, a2, . . . , an

{ a1, a2, . . . , an }

51

Matrices
A matrix is a rectangular array of numbers.

Example:
!

"
0 1 ! 2.3 0.1

1.3 4 ! 0.1 0
4.1 ! 1 0 1.7

#

$

This matrix has 3 rows and 4 columns.  We call it a
3x4 matrix.

A matrix with the same number of rows and columns
is called a square matrix.
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Matrix Transpose
The transpose of the matrix is the result of 
flipping the matrix about its diagonal.

!

"
"
"
#

a11 a12 á á á a1N

a21 a22 a2N
...

. . .
...

aM 1 aM 2 aMN

$

%
%
%
&

T

=

!

"
"
"
#

a11 a21 á á á aM 1

a12 a22 aM 2
...

. . .
...

a1N a2N aMN

$

%
%
%
&
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Matrix-Scalar Multiplication

k

!

"
"
"
#

a11 a12 · · · a1N

a21 a22 · · · a2N
...

. . .
...

aM 1 aM 2 · · · aMN

$

%
%
%
&

=

!

"
"
"
#

k a11 k a12 · · · k a1N

k a21 k a22 · · · k a2N
...

. . .
...

k aM 1 k aM 2 · · · k aMN

$

%
%
%
&

Each element of the matrix is multiplied by the scalar.
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Matrix-Vector Multiplication

The result is a linear combination of the columns of the 
matrix.
The linear coefficients are the elements of the vector.

!

"
"
"
#

a11 a12 · · · a1N

a21 a22 · · · a2N
...

. . .
...

aM 1 aM 2 · · · aMN

$

%
%
%
&

v =

!

"
"
"
#

a11

a12
...

a1N

$

%
%
%
&

v1 +

!

"
"
"
#

a21

a22
...

a2N

$

%
%
%
&

v2 + · · · +

!

"
"
"
#

aM 1

aM 2
...

aMN

$

%
%
%
&

vN
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Matrix-Vector Multiplication

Each element of the result is the dot product of the 
rows of the matrix with the vector.

!

"
"
"
#

a11 a12 á á á a1N

a21 a22 á á á a2N
...

. . .
...

aM1 aM2 á á á aMN

$

%
%
%
&

v =

!

"
"
"
#

r Ta,1
r Ta,2
...

r Ta,M

$

%
%
%
&

v =

!

"
"
"
#

r Ta,1v
r Ta,1v
...

r Ta,Mv

$

%
%
%
&
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Identity Matrix
The Identity Matrix is a matrix with 1s along the 
diagonal and zeros everywhere else.

I =

!

"
"
"
"
"
#

1 0 á á á 0 0
0 1 á á á 0 0
...

. . .
...

1 0
0 á á á 0 1

$

%
%
%
%
%
&

Question:  What is         for any vector      ?Iv v

57

Inputs Outputs

x

M

M x

Matrix multiplication is a type of function.
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Matrix-Matrix Multiplication

Each column of the output is the result of the matrix
U times the corresponding column of the matrix V.

U

!

"
"
#

v1 v2 á á á vN

$

%
%
&

' () *
V

=

!

"
"
#

U v1 U v2 á á á U vN

$

%
%
&
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Matrix-Matrix Multiplication

Each element of the output is a dot product of the rows
of the first matrix with the columns of the second.

!

"
"
"
#

r T
u, 1

r T
u, 2
...

r T
u,M

$

%
%
%
&

!

"
"
#cv,1 cv,2 á á á cv,N

$

%
%
& =

!

"
"
"
#

r T
u, 1cv,1 r T

u, 1cv,2 . . . r T
u, 1cv,N

r T
u, 2cv,1 r T

u, 2cv,2 . . . r T
u, 2cv,N

...
. . .

...
r T

u,M cv,1 r T
u,M cv,2 . . . r T

u,M cv,N

$

%
%
%
&
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Matrix Inverse
For some matrices, there exists an inverse matrix such 
that

M ! 1M = I

x M x

M ! 1

Note:  it’s a very special thing for a matrix to be invertible.
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Theorem

Only square matrices can be invertible.
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Block Matrix
A matrix where each element is a matrix.

!

"
"
"
#

A11 A12 á á á A1N

A21 A22 A2N
...

. . .
...

AM 1 AM 2 AMN

$

%
%
%
&

Here, each            is a matrix.Aij
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Block Matrix Multiplication

Block Matrix Multiplication is just like the dot product 
matrix multiplication.

!

"
"
"
#

r T
A, 1

r T
A, 2
...

r T
A,M

$

%
%
%
&

!

"
"
"
"
#

cB, 1 cB, 2 á á á cB,N

$

%
%
%
%
&

=

!

"
"
"
#

r T
A, 1cB, 1 r T

A, 1cB, 2 . . . r T
A, 1cB,N

r T
A, 2cB, 1 r T

A, 2cB, 2 . . . r T
A, 2cB,N

...
. . .

...
r T

A,M cB, 1 r T
A,M cB, 2 . . . r T

A,M cB,N

$

%
%
%
&
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