Fundamentals

Nicholas Dwork
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The Euclidean Plane
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The Euclidean Space
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Functions

A function is a mathematical machine
You input something
You get something out

function \’f(afj/inpm
N

output

As long as you input the same thing, you’ll always
get the same thing out.




Example Function

The exponential function: eXp

exp(—1) = 0.3679

exp(0) =1
exp(l) = 2.7183
exp(1.2) = 3.3201

A function maps inputs to outputs. It converts

x to f(x).
f

Inputs Outputs




Inverse Function

The inverse function converts all f () in Outputs

back to x in Inputs.

f—l

Note: Not every function has an inverse function.
An invertible function is a very special thing.

Example Inverse Function

The inverse of the eX] function is the log function.

eXp(—l) — 0.3679

exp(0) =

exp(1) = 2.7183
2

exp(1.2) = 3.3201

log (0. 3679) 1
log(1) =

log(2.
log(3.3201) = 1.2




Graphing a Function

Showing the points of a function in a Euclidean Plane

exp(Xx)
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Graphing a Function

Showing all the points of a function in a Euclidean Plane
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Vertical Line Test

If you draw a vertical line through the graph of a
function, it will intersect at most one point.
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Equation of a Line

One way to represent a line is with a function of
the form

flx)=max+b

m is called the “slope” of the line.
b is called the “vertical intercept” of the line.

We can’t represent vertical lines this way. We’ll
see a more general representation later.
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Perpendicular

Two lines are perpendicular means that the angle
between them is 7/2 radians.
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Triangles

A shape with three sides.

A DA
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Similar Triangles

Two triangles that have the same angles are similar.

Q<
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The ratios of equivalent lengths of similar triangles are
equal

L2

di bl
b,
C1 (=)

ai a2 by b ai a2

b1 bo C1 C2 C1 C2
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Equal and Opposite Angles

Opposite angles formed with straight lines are equal.

Right Triangle

A right triangle has one angle equal to 7/2

That angle is denoted with a square as shown

The line opposite the 7/2 angle is called the
hypotenuse .




Pythagorean Theorem

The lengths of the sides of a right triangle satisfy
the following formula

<
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The three angles of a triangle add up to !
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Law of Sines

a _ b _ ¢
sin(a)  sin(3)  sin(y)
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Law of Cosines

c? = a® + b* — 2abcos(y)

This is a generalization of the Pythagorean Theorem.
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Circle

A circle centered at (a,b) with radius ris the set of all
points a distance r from (a,b).

g

(a,b

PN
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Equation of a Circle

Follows from the Pythagorean theorem.

(x—a)+(y—b)? =’

The center of the circle is located at (a,b).

T is called the circle’s radius.

27 is called the diameter of the circle.
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The Unit Circle

The unit circle is a circle of radius 1 centered at (0,0).
2 2 —
X“+y =1

Graph of the unit circle

1

-
N

2

Each point on the unit circle makes a right triangle
with a hypotenuse of length 1.

The Unit Circle
/
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Sine

The Unit Circle
/

sin ()
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Cosine

The Unit Circle
/
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From the Pythagorean Theorem:

sin®(!) 4+ cos?(1) =1

N\

sin (0)

\—The Unit Circle
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The Number Pi - 77

is defined as

_ Circumference of the Circle
~ Diameter of a Circle

It turns out that this number is the same for all circles!

w1 3.14159265
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Radians

| | =r!

where | is the arc length
| I is in radians

There are 277 radians in a full revolution.
There are 77 radians in a half revolution.
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Degrees

There are 360° in a full revolution.
There are 180° in a half revolution.

dah
N

We will not use degrees very much in this class.
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Vectors

A vector is an ordered finite list of numbers.

Example: 1 1.1 (! 1.1,0.0,3.6,! 7.2)
0.0 §
t 3.6 ¢
7.2
Example: 0

All the elements are 0.
The length is understood from context.
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Drawing Vectors in 2D
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Vector Addition

Two vectors of the same size can be added together by
adding corresponding components.

Example: 0 1 1
| 7$ + 2$ =" 93
3 0 3
Example: 1 | 1 — 0
9 " 1 38
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Geometric Interpretation

Vectors add tip-to-tail.
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Scalar Multiplication

Every element of the vector is multiplied by the
scalar (i.e. number)

Example: ) . i .
1 12
(12)" 9% ="1 18!

1 6 12

37

Geometric Interpretation

Vector is scaled by scalar multiplication.

1.5a
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Equation of a Line

Suppose that a is a point on the line and v is a
vector parallel to the line. The the line can be
represented as

flt)=a+tv

where tis any real number. /"
(V)

<~ a
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Length of a Vector

The length of a vector d, denoted by !da!2 ,is

|all.= af+ a3+ 4dé a2

a2
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Dot Product

If a and Lk are vectors then

adb=a"' b= ab+ab,+ 444 a, b,
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Perpendicular Vectors

Two vectors d and L are perpendicular if and only if

aab=0
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Equation of a Plane

A normal vector is a vector perpendicular to all points
on a plane.

The equation of a plane is specified by a normal vector
and a point on the plane.

The key is realizing how to
write the equation of a plane
using the dot product.
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Equation of a Plane

Suppose n is the normal vector of a plane and a is a
point that lies in the plane.

Then any other point pin
the plane satisfies N

na(p! a)=0
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Dot Product Properties

The angle between two vectors a,b is acute if and only if

aab >0

The angle between two vectors a,b is obtuse if and only if

a-b<(
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Cross Product

If a4 and Lk are vectors with three elements then

" bay
al! b= ! blag ! b3a13
a1y " axby

a! L is perpendicular to both @ and k.
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Cross Product - Right Hand Rule

Curl fingers from vector T to .

Thumb points in direction of
r Xy

i

/
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Cross Product and Parallel Vectors

The cross product of parallel vectors is 0.
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Size of a Vector

If A is avector then its size is

lal = a?+ a5+ adh a2

Note: unless otherwise specified ! al = lal .
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Linear Combination

Suppose a;,dy, ..., dy are vectors of the same size.

A linear combination of these vectors is an expression
of the form

!1a1+!2a2+ ééalnan

where !1,!2,..., 'n are numbers.
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Span

Suppose di,dp,...,dn are vectors of the same size.

The spanof {Q1,82,...,an} is the set of all
linear combinations of the vectors in the set.
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Matrices

A matrix is a rectangular array of numbers.

Example: 0O 1 !23 01
1.3 4 101 0%
41 '1 0 17

This matrix has 3 rows and 4 columns. We call it a
3x4 matrix.

A matrix with the same number of rows and columns
is called a square matrix.
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Matrix Transpose

The transpose of the matrix is the result of
flipping the matrix about its diagonal.

L 4z YT : , .o J
dj;  dip aAaa ain dj; Ay 4aaa aum:
0 0
dp;  Ax aonN ? djp A am 2 d
] é = _ d
t é
a1 awv?2 aMN aiNn AN aMN
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Matrix-Scalar Multiplication

- -

aip a2 -+ AN 0 ka;;, kaip -+ kan .
k:: a2y dgoo -+ QoN ? w Kagg Kage --- Kaon g
. . Y%=" .

# o ' ; g # o ' b
a1 auz2 -+ aumN ka1 kauwe --- kawn

Each element of the matrix is multiplied by the scalar.
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Matrix-Vector Multiplication

- - - - -

‘ aijz a2 - aiN é 311? ., 6121? . am 1?
S8 a2 - aN 0}’ " a120}’ " azzf noam 2
| = n + n B "

: SO = : Gt : 4ov 4o il
avi amz2 - aun aiN agn amN
The result is a linear combination of the columns of the

matrix.
The linear coefficients are the elements of the vector.
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Matrix-Vector Multiplication

, o, o, ~ . T ~w . T ~
a;; app aaa ain . — Ta1 —, r%,lvo
Ve 7 7 n T 11}

ay ap 44aa azzvf n— 1L, —  wrlivg

. . év =" . év =" g

po : # : #0006
4 A 4 T T

a1 ayz2 aaaayn — Taom — Fa,mV

Each element of the result is the dot product of the
rows of the matrix with the vector.
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Identity Matrix

The Identity Matrix is a matrix with 1s along the
diagonal and zeros everywhere else.

"1 0 aaao o
w0 1 44ao c%
| = :d
"o . d
# 1 0t
0 a4a0 1

Question: Whatis |V for any vector v ?
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Matrix multiplication is a type of function.

M

Inputs Outputs
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Matrix-Matrix Multiplication

Each column of the output is the result of the matrix
U times the corresponding column of the matrix V.
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Matrix-Matrix Multiplication

T - > T T T -
r¥’l _o | | | W ru’lC\hl ru’lC\/’Z e ru’]_CV’N 0
— Tu2 —?)ﬂ L % wTioC1 TioG2 oo TaCuN g
t : Pyl o2 BAACNE= o
— Tim — oM &1 Tim G2 - Toum G

Each element of the output is a dot product of the rows
of the first matrix with the columns of the second.
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Matrix Inverse

For some matrices, there exists an inverse matrix such

that |
M'IM = |

M!l

Note: it’s a very special thing for a matrix to be invertible.
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Theorem

Only square matrices can be invertible.
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Block Matrix

A matrix where each element is a matrix.

A;; A 4éda AN
A1 A AN §
Eol .
Av1i Awm:2 AmMN

Here, each Ajj is a matrix.

63

Block Matrix Multiplication

Block Matrix Multiplication is just like the dot product
matrix multiplication.

P - !
—_— r/IY 1 —0 " | | | y rI\’ 1CB’ 1 I’:I,_;' 1CB, 2 r,I' 1CB,N
T ’ w7 T
a2 _? Ce.1 Cg 2 Addcey %_ mla 2081 Ta 2082 FA 208N
t : é;; é" #
— MAim — | | | FAm CB.1 TAm CB.2 --- TAm CBN

[o SN ==\=) “
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