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Abstract The discrete curvelet transform decomposes an image into a set of fundamental
components that are distinguished by direction and size and a low-frequency representation. The
curvelet representation of a natural image is approximately sparse; thus, it is useful for com-
pressed sensing. However, with natural images, the low-frequency portion is seldom sparse.
This manuscript presents a method to modify the redundant sparsifying transformation com-
prised of the wavelet and curvelet transforms to take advantage of this fact for compressed
sensing image reconstruction. Instead of relying on sparsity for this low-frequency estimate,
the Nyquist-Shannon sampling theorem specifies a rectangular region centered on the O fre-
quency to be collected, which is used to generate a blurry estimate. A basis pursuit denoising
problem is solved to determine the details with a modified sparsifying transformation.
Improvements in quality are shown on magnetic resonance and optical images. © 2022 SPIE
and IS&T [DOIL: 10.1117/1.JEL31.6.063043]
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1 Introduction

Fourier sensing applications include magnetic resonance imaging (MRI), optical coherence
tomography, computed tomography, and radio astronomy. In each of these applications, the data
collected are values of the Fourier transform of the image of interest. To reconstruct the image,
one must perform an approximation to the inverse Fourier transform. It is necessarily an approxi-
mation because the samples are a finite set of isolated points in the Fourier domain. If the samples
are collected on a uniform grid, then the inverse discrete Fourier transform serves as a fast and
high-quality method for image reconstruction. However, if the samples are not on a uniform grid
or if the grid is not fully sampled (meaning that the samples are not sufficiently dense to satisfy
the Nyquist—Shannon sampling theorem), then other inversion algorithms have shown improved
results.

Compressed sensing is one such reconstruction method (compressed sensing is also known
as compressive sampling); it permits accurate reconstructions of images with fewer samples than
the number required to satisfy the Nyquist-Shannon theorem.! Compressed sensing can achieve
this feat because it incorporates additional knowledge into the reconstruction. It relies on the
a priori knowledge that the image can be reconstructed well with a linear transformation applied
to a sparse vector. Common choices include the inverse wavelet transform,>* the inverse curvelet
transform,* and learned dictionaries.” It is often beneficial to have fast algorithms that implement
the sparsifying transformation and fast algorithms exist for the wavelet®’ and curvelet trans-
forms.® Therefore, we focus on these transforms for this manuscript. Image reconstruction is
formulated as a basis pursuit denoising (BPD) convex optimization problem.” Compressed
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sensing has benefited many applications including medical imaging,'® holography,'' photogra-
phy,'? and communications.'*!*

Though the wavelet transforms of natural images are often sparse,'” the portion correspond-
ing to the lowest-frequency bin is seldom sparse. In Ref. 16, Dwork et al. used this property with
Fourier sampling to specify the size and shape of a region centered on the 0 frequency that is
fully sampled and to alter the optimization problem to solve for a modified vector. The resulting
problem is then converted into the standard form of the BPD problem. Thus, image reconstruc-
tion becomes a two-step process: (1) estimate a blurry image with the fully-sampled low-
frequency portion of the sampled region and (2) enhance the image with high frequency details
that result from solving a BPD problem. The system matrix of the optimization problem remains
the same, thus all theoretical guarantees of compressed sensing that pertain to the original BPD
problem apply to the modified problem. Because the sparsity of the optimization variable in the
new problem is higher than that of the original problem, the error of the result is reduced.!”

Redundant dictionaries (also called overcomplete bases) offer a representation that permit a
more sparse representation than a basis.’ In this work, we consider the overcomplete basis com-
prised of the inverse wavelet and inverse curvelet transformations for two-dimensional image
reconstruction problems. Notably, like the wavelet transform, although the curvelet transform
of a natural image is sparse there is a low-frequency portion of the transform is not sparse. In this
work, we extend the technique of'® and simultaneously take advantage of this low-frequency
structure in both transforms. (An early version of this work was presented at the 2021 annual
meeting of the Society for Industrial and Applied Mathematicians.) This leads to an incremental
improvement in quality at the cost of additional computations required for the curvelet transform
and its inverse. Again, the theoretical guarantees of compressed sensing that pertain to recon-
struction with a redundant vector set remain. The increased sparsity attainable with the redundant
dictionary further reduces the theoretical bound on the error. We will demonstrate a reduced error
empirically with several images.

2 Methods

In this section, we review the BPD optimization problem and the theoretical results of com-
pressed sensing. We will then discuss compressed sensing using the redundant dictionary com-
prised of wavelet and curvelet vectors. And we will show a method to utilize the structure of the
sparsifying transform to better sample the Fourier domain and increase the sparsity of the opti-
mization variable. Results of reconstructing images with these algorithms are presented in Sec. 4.

2.1 Background

Let x be the desired image and b be the measured data where Ax 4+ ¢ = b. Here, A is called the
system matrix, and € is an additive Gaussian noise vector of independent and identically dis-
tributed values. Let ¥ be the sparsifying linear transformation. Let y be a sparse vector such that
the desired image is approximated well by W*y. Then one can estimate y by solving the following
optimization problem

Minimize ||y||, subject to (1/2)||Ay —b||, < o, (1)

¥
where 67 is a bound on the noise power. With this notation, ¥* is included in A (see below). This
problem, called the sparse signal recovery problem, is an np-hard combinatorial optimization

problem. The BPD problem is a related problem where the L, penalty is replaced with the
L, norm

Minimize ||y||; subject to (1/2)||Ay —b||, < 6. 2)
y

This is a convex optimization problem and can be solved with known efficient algorithms.
One might hope that solving Eq. (2) gets us close to an answer for Eq. (1). Indeed, the
theory of compressed sensing dictates that when A satisfies specific properties, (e.g., the mutual
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Fig. 1 (a) Original image, (b) magnitude of the DDWT-4 coefficients, and (c) magnitude of the
curvelet transform coefficients.

coherence conditions,'® the restricted isometry property,'® or the restricted isometry property in
levels'”) then the solution to the BPD problem is optimal for the sparse signal recovery problem
with very high probability. Moreover, the more sparse y is, the fewer the number of measure-
ments that are required to attain the solution.'”!* This latter fact is the leverage that we will
exploit to generate high quality images with fewer samples in this manuscript.

With standard compressed sensing and Fourier sensing, b is the vector of measured Fourier
values and A = MFW¥* where W is the sparsifying transformation (which may have more rows
than columns), -* represents the adjoint of the transformation, F is the unitary discrete Fourier
transform, and M is the sampling mask that identifies those samples that were collected. An
effective choice for W is the discrete Daubechies wavelet transform (DDWT). Figure 1(a) shows
an image of a dog eating from an ice cream container, and Fig. 1(b) shows the magnitude of the
DDWT of order 4 (DDWT-4) coefficients when applied recursively to the lowest-frequency bin
four times. The vast majority of the resulting coefficients appear black, which demonstrates
the sparsifying behavior of the DDWT-4. The upper left corner of the transform is not black;
this is a low-pass filter and downsampling of the original image and is seldom sparse with natural
images.

Let W represent the orthogonal DDWT-4. To satisfy the Nyquist—Shannon sampling theorem
and accurately estimate the lowest frequency bin of the DDWT-4, one must collect a fully
sampled region (FSR) with size equal to that of the lowest-frequency bin.'® This is the same
FSR as specified by the two-level sampling scheme in.!” From this FSR, a blurry image can
be reconstructed.'® When using the DDWT-4 as the sparsifying transformation, optimizing for
the remaining details increases the sparsity of the resulting optimization variable. The missing
details of the image can be estimated by solving the following problem

Minimize ||y||, subject to |MF(¥*y + x;) — b||, < o, 3)
y

where ¥ = W and x;, = F*KgM; b. Here, K is a Kaiser—Bessel window used to reduce ringing
in the blurry estimate and M; is a mask that specifies the fully sampled low-frequency region.
Equation (3) is equivalent to

Minimize ||y||, subject to (1/2)|MF¥*y —f||, < o, 4)
v

where f = b — MFx;. By letting A = MF¥*, it becomes apparent that this problem has the
form of the BPD Eq. (2) where b has been replaced by f. Once the solution y* is determined,
the completely reconstructed image is x* = x; + P*y*. We call Eq. (4) the structured BPD
(S-BPD) problem.
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2.2 Curvelets

Curvelets offer an opportunity to further increase the sparsity of the optimization variable. The
curvelet transformation permits a representation of an image using a multiscale pyramid with
several directions available at each position (as opposed to wavelets, which decompose an image
into horizontal and vertical components). Note that the discrete curvelet transform is a tall trans-
form (it is a tight frame®®) with more coefficients than there are pixels in the original image.
Using curvelets as the sparsifying transform with compressed sensing image reconstruction has
been shown to reduce the blocking artifacts common to wavelet representations.’! Figure 1(c)
shows the magnitude of the discrete curvelet coefficients of Fig. 1(a). (Note that the display of
the curvelet coefficients includes white-space to ease interpretation; it was generated using the
CurveLab software.??)

Similar to the low-frequency bin of the wavelet transform, the center portion of the curvelet
transform is the result of windowing, low-pass filtering, and downsampling the original image.®
Thus, like the wavelet transform, this region will not be sparse for most natural images.

2.3 Structured Sparsity with Curvelets and Wavelets

Consider the redundant dictionary comprised of curvelets and wavelets. The number of signifi-
cant nonzero coefficients would never increase with the addition of curvelets into the dictionary
for the image can always be represented with the same wavelet coefficients and with all curvelet
coefficients equal to 0. Intuitively, one would expect that increasing the redundancy of the set of
vectors would permit an even more sparse representation of an image. Suppose, for example, one
wanted to represent v = w; + ¢; where w; is an element of the wavelet basis, and ¢; is an element
of the curvelet basis.”* If one were to express v as a linear combination of vectors from both bases
then the number of nonzero linear coefficients required would be 2. However, if one were to try
to represent the same image v using only the wavelet basis, then it would require a larger number
of significant linear coefficients.

Recall that, in accordance with the theorems of compressed sensing, increased sparsity per-
mits an accurate reconstruction with fewer data samples. Indeed, after the benefit was shown
empirically,”** the theory was developed to show that accurate reconstruction was possible with
a redundant (or overcomplete) incoherent set of vectors.”*® We will now present a method analo-
gous to that of'® that simultaneously takes advantage of the low-frequency structure present in
both the curvelet and wavelet transforms of natural images.

Because sparsity cannot be assumed for low-frequency region of the curvelet transform, we
rely on the Nyquist—-Shannon sampling theorem. This dictates a FSR with spacing equal to the
inverse of the full size of the image and with size equal to the center portion of the curvelet
transform. The values of the FSR are used to create a blurry image by applying a low-pass
window (W as specified in Ref. 8) and then performing an inverse discrete Fourier Transform.
Figure 2(a) shows this blurry estimate for the image of Fig. 1(a). Figure 2(b) shows the result
of subtracting this blurry estimate from the original image, and Fig. 2(c) shows the curvelet
transform of Fig. 2(b). When comparing Fig. 1(c) with Fig. 2(c), the increased sparsity of the
low-frequency region is apparent.

This is usually the case for natural images: after subtracting the blurry estimate from the
sparsity of the curvelet transform is increased.

As discussed, both wavelets and curvelets have a region that is a low-pass filter and down-
sampling of the original image. The larger of these two regions dictates an FSR centered on 0
frequency to be collected that satisfies the Nyquist—-Shannon sampling theorem. From this FSR,
a blurry frequency estimate is created. If the center of the curvelet is larger than the lowest-
frequency bin of the wavelet transform, then the blurry estimate is generated according to
Sec. 2.3. Otherwise, the blurry estimate is generated according to Ref. 16. Denote this blurry
estimate as x; . Let ¥ = (W, C), the block-matrix comprised of the wavelet and curvelet trans-
forms. As discussed, the columns of W* may offer a more sparse representation of the image.
This redundancy makes a more sparse representation of the optimization variable available,
leading to a reconstruction with a reduced error bound. The image is reconstructed by solving
Eq. (4) for y* and setting x* = x; + P*y*.
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Fig. 2 (a) Blurry estimate of Fig. 1(a), (b) result of subtracting the blurry estimate from the original
image, and (c) magnitude of the curvelet transform coefficients of panel b. Note that the low-
frequency center region in panel ¢ is much more sparse than the corresponding region of Fig. 1(c).

3 Experiment Design

The six images studied in this manuscript, along with their sizes, are shown in Fig. 3. All images
were scaled by their maximum so that pixel values lied within [0, 1]. The data for Fig. 3(a) and
3(b) were collected with MRI machines. The data for Fig. 3(a) were collected with a 3 Tesla
clinical MRI using a Cartesian trajectory, a field of view of 25.6 X 25.6 cm? and a 1-mm slice
thickness. The data of Fig. 3(a) were gathered with institutional review board (IRB) approval,
health insurance portability and accountability act (HIPAA) compliance, and patient informed
assent/consent. The data for Fig. 3(b) were made available to the public at Ref. 27. The data
for Figs. 3(c)-3(f) were made publicly available from various sources and are often studied in
image processing research papers. All data were initially fully sampled and retrospectively
downsampled for processing with the algorithms presented in this manuscript.

The MRI data of the knee [Fig. 3(b)] are from a fully sampled three-dimensional dataset. The
data were transformed into a the hybrid-space of spatial frequency in the anterior—posterior
and superior—inferior dimensions and location in the left-right dimension. Afterwards, a two-
dimensional slice located near the center of the knee in the left-right dimension was isolated for
further processing in this manuscript.

Other works have attempted to address the difference in sparsity of the lowest-frequency
bin of the sparsifying transform by minimizing an objective function with a weighted norm,
as follows

Minimize ||y|[,; subject to (1/2)||Ay —p||, <o, ®)
y

where [|y||,,1 = @1|y1| + @2]y2| + ... + @y|yy|. In Ref. 28, Candes et al. iteratively update the
weight vector @ by setting it inversely proportional to the intensity of the corresponding

256 x 256 320 x 320 768 x 768 512 x 512 512 x 512 1024 x 1024

Fig. 3 The six images analyzed in this manuscript along with their sizes in pixels. The data of
panels (a) and (b) were collected with MRI machines; the data of panels (c)-(f) were collected
with optical cameras. The data of panel (b) were made available to the public at Ref. 27.
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coefficient. In Ref. 29, Varela-Mattatall et al. set the weight w for each bin of the wavelet trans-
form independently by analyzing the zero-filled reconstruction and they set the elements of @ for
the lowest-frequency bin to 0. We will analyze a noniterative version of these techniques
where w; = 0 if the pixel in the transformed domain corresponds to the lowest-frequency bin
and w; = 1 otherwise. That is, w is a mask that specifies whether or not the pixel is an element
of a high-frequency bin of the sparsifying transform. We will denote solving Eq. (5) with this
definition of @ as BPD with mask.

For all results presented, the fast iterative shrinkage threshold algorithm (FISTA) with line
search®*?! run for 100 iterations was used to solve the equivalent Lagrangian form of the
problem. For example, to solve Eq. (2), the following equivalent optimization problem was
solved

Minimize (1/2)[|Ay = B3 + [Il]:- (©)

where A is the regularization vector. The iterative reweighting scheme of Ref. 28 was used
to automatically determine A with the number of reweighting iterations equal to 5. The initial
value of 1 was set to the corresponding values of the wavelet coefficients determined with the
zero-filled reconstruction (the reconstruction assuming all values not sampled are equal to 0).
The error metrics reported are relative error, defined as e = ||true — estimate||, /||true||,, mean
squared error (MSE), and the structural similarity metric (SSIM).*?

Three different sparsifying transformations were tested: DDWT-4, the wrapping version of
the discrete curvelet transform, and a redundant dictionary comprised of both of these trans-
forms; we denote these transformations as wavelet, curvelet, and wavCurv, respectively. For
each transformation, two different sampling patterns were tested: a variable density sampling
pattern and a variable density sampling pattern with an FSR. (Due to spatial limitations, not
all results are presented.) The sampling patterns used for the results in this manuscript were
generated using a separable Laplacian distribution. Examples are shown in Fig. 4. When an
FSR was included, the number of variable density samples was reduced to retain the same total
number of samples.

10,000

15% 18% 23% 31%

Fig. 4 Example variable density sampling patterns generated from a separable Laplacian distri-
bution with a standard deviation of 0.3 the length of the sides. The top/bottom row shows sampling
patterns without/with the fully sampled center region corresponding to the size of the low-
frequency region of the curvelet transform, respectively. From left to right, the sampling patterns
include 10,000, 12,000, 15,000, and 20,000 points, respectively; this corresponds to 15%, 18%,
23%, and 31% of the total number of samples.
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BPD BPD w/mask Structured BPD

Sampling mask

Without FSR

With FSR

Fig. 5 (Left) Sampling masks without and with the fully sampled center region. (Right)
Reconstructions of the knee with 8192 samples (8% of the total number of pixels). The relative
error for each reconstruction is written in the corresponding image.

4 Results

Figure 5 shows reconstructions of Fig. 3(b) from 8192 samples (8% of the number required for
full sampling). The sampling mask was generated from a separable Laplacian distribution with a
standard deviation of 0.3 the length of the sides of the image in each dimension. The recon-
structions from sampling patterns that include the FSR are far superior to those without it.
When the FSR is included, the relative error for the reconstruction from the structured BPD
problem is slightly smaller than those reconstructed with BPD or BPD with mask.

Figure 6 shows reconstructions of Fig. 3(b) from 8192 samples with sampling masks gen-
erated from separable Laplacian distributions with standard deviations of 0.2, 0.3, and 0.4 along
with the magnitude of the difference images. The standard deviation has a significant effect on
the quality of the reconstruction and the metric value.

Figure 7 shows the results of solving the Lagrangian form of Eq. (4) for three different
sparsifying transformations: wavelets, curvelets, and the redundant dictionary made of both
wavelets and curvelets. We see that the wavelet sparsifying transformation achieves a result with
less relative error than the curvelet sparsifying transformation. Notably, though, the masts of the
boat appear sharper when using curvelets than when using wavelets. However, there are stria-
tions in the clouds in the curvelet reconstruction, which are not present in the original image or in
the wavelet reconstruction. The lowest relative error is attained using both wavelets and curve-
lets, and the reconstruction is able to reduce the block artifacts on the boat mast associated with
wavelets without adding striations into the clouds. The reconstruction from wavelets alone
presents blocking artifacts, and the reconstruction from curvelets alone presents striping artifacts
with isolated high level values; both artifacts are well known.>? The reconstruction of the redun-
dant dictionary presents a combination of both artifacts and does so in a way that recapitulates
the details of the reference image better.

Figure 8 shows plots of MSE and SSIM for reconstructions of Fig. 3(a) generated with struc-
tured BPD using sparsifying transformations of wavelets, curvelets, and the redundant dictionary
versus number of samples. The redundant dictionary generates reconstructions with lower
(better) relative error and higher (better) structural similarity for all numbers of samples.

Table 1 shows the MSE and structural similarity for reconstructions generated with BPD,
BPD with a regularization mask, and structured BPD using sampling masks without and with
the fully sampled center region and 10% of the samples required to satisfy the Nyquist—
Shannon sampling theorem. For all the images of Fig. 3, structured BPD attains the best quality
metrics.
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0.2 0.3 0.4

Sample masks

Reconstructions

|Difference| x4

Fig. 6 Reconstructions of the knee with 8192 sampling patterns generated from a separable
Laplacian distribution with a standard deviation of (left) 0.2, (center) 0.3, and (right) 0.4. The
relative error for each reconstruction is written in the corresponding image.

Figure 9 presents differences in the values of SSIM and the sum of mean absolute error
(MAE) with MSE for reconstructions from solving Eq. (6) when using the redundant dictionary
of wavelets and curvelets plotted against a dictionary comprised exclusively of wavelets and a
dictionary comprised exclusively of curvelets. SSIM is a perceptually motivated metric while
MAE + MSE attempts to present a more balanced metric than either MAE or MSE alone.™
The results are plotted for 158 different images from the ImageNet database where each image
was randomly selected from a separate class.** The Fourier values of each square image were
sampled with an FSR added to a variable density Laplacian distribution using a parameter value
of 0.3 the length of the image’s side. As can be seen, the SSIM value when using the redundant
dictionary is almost always higher than when using wavelets alone or curvelets alone, indicating
that the quality is improved when using the redundant dictionary.

For the majority of images, the redundant dictionary improves the quality of the result with
respect to either of the metrics evaluated. When comparing the redundant dictionary to wavelets,
the improvement is usually more pronounced when a small fraction of samples was used. When
comparing the redundant dictionary to curvelets, the improvement is usually more pronounced
when a larger fraction of samples was used. Notably, for some images, the redundant dictionary
reduces the value of the quality metric. This is more often the case when comparing the redun-
dant dictionary to curvelets and in spite of the fact that curvelet regularization can cause striping
artifacts and isolated high values (sometimes described as salt and pepper noise).** Thus, even
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Wavelet Curvelet wavCurv

i

\ .

Structured recons

|Difference| x4

Fig. 7 Reconstructions of Fig. 3(e) using the structured compressed sensing algorithm using three
different sparsifying transformations: wavelets, curvelets, and wavelets and curvelets. An auto-
calibration region was included as shown in the second row of Fig. 4 and the Laplacian variable
density sampling pattern was generated with a standard deviation of 75 pixels.

0.22 0.995
E Wavelets
4 =
= @ == Curvelets
«© (7]
g == wavCurv

o
=
N

0.955
Sample fraction g g Sample fraction

0.05
0.30

Fig. 8 Plots of error metrics versus sampling percentage for brain reconstructions.

though the metrics are reduced, the images may appear to be better quality to the human eye.
This is the case for the boat reconstruction of Fig. 7

5 Discussion and Conclusion

In this work, we show that the low-frequency structure present in the wavelet and curvelet trans-
forms can be simultaneously exploited to improved the quality when using a redundant diction-
ary comprised of both transforms. This exploitation comes in two forms: (1) specifying the size
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Table 1 Structural similarity and MSE metric values for reconstructions from 10% of samples
using a sampling mask generated from a separable Laplacian distribution with a standard
deviation of 0.3 excluding and including an autocalibration region using a sparsifying transforma-
tion comprised of wavelets and curvelets. The image labels are according to Fig. 3.

Without FSR With FSR
SSIM MSE - 108 SSIM MSE - 103
BPD with BPD with BPD with BPD with
Image BPD mask BPD mask BPD mask S-BPD BPD mask S-BPD
a 0.687 0.613 6.20 7.20 0.968 0.967 0.969 0.656 0.670 0.638
b 0.876 0.871 7.88 8.18 0.981 0.981 0.981 1.24 1.25 1.22
c 0.790 0.788 19.3 19.4 0.973 0.972 0.973 295 3.05 2.92
d 0.00 0.00 236 236 0.939 0.939 0.940 6.03 6.02 6.00
e 0.823 0.821 12.2 12.2 0.947 0.946 0.948 4.08 412 4.03
f 0.700 0.700 26.4 26.5 0.969 0.969 0.969 3.63 3.68 3.62
1073 MSE+MAE SSIM
@ 14 0.16 0.35
k)
)
8 2
= 8
= @
g g
2 =
5 »
[0} 0
c —0.02 0.05
1078
@ 0.05 0.35
K
[
c 5
Z s
o
S 4]
3
T _i5 —0.03 0.05

Fig. 9 Improvements in the SSIM and MAE plus MSE for images reconstructed with structured
BPD with the redundant dictionary of wavelets and curvelets plotted against exclusively wavelets
and plotted against exclusively curvelets for 158 different images (each from a separate class)
taken from the ImageNet dataset.>* The color indicates the fraction of Fourier domain pixels that
were sampled.

and shape of a fully sampled center region to satisfy the Nyquist—-Shannon sampling theorem
and (2) a structured BPD problem that determines the details. We show that this improves the
quality over standard compressed sensing reconstructions and that it improves the quality over
a masked version of compressed sensing where the values of the lowest-frequency bins of the
wavelet and curvelet transforms are not penalized. Taking advantage of the fully sampled center
region improved the quality dramatically for the images studied in this manuscript. The struc-
tured BPD problem improved the results further still but by a much smaller amount.

The MRI data presented were from three-dimensional data collections that made a hybrid
space (two dimensions of frequency and one of location) possible. For some MRI experiments,
the data is collected in such a way that a more general three-dimensional sparsifying transfor-
mation is required (e.g., using the cones®® or yarn ball®’ trajectories). For these applications,

Journal of Electronic Imaging 063043-10 Nov/Dec 2022 « Vol. 31(6)



Dwork and Larson: Utilizing the structure of a redundant dictionary comprised of wavelets and curvelets. ..

the methods of this manuscript can be extended using the three-dimensional discrete curvelet
transformation.*®

Notably, the low-frequency filter of the the fast discrete curvelet transform of CurveLab has
a much higher order than that of the DDWT-4 wavelet transform. This suggests that a lower
order filter could be used, which would permit a nonnegligible amount of aliasing, but where
the quality of the reconstruction would be retained when using a fully sampled center region.
This would reduce the computations required to implement the curvelet transform and its adjoint,
which would reduce the time required to attain a reconstruction.

FISTA was used to solve the optimization problems for this manuscript. However, after
exploiting the low-frequency structure, the optimization variable becomes much more sparse.
It may be sparse enough that an orthogonal matching pursuit (OMP) algorithm could be used
to solve the problem well. Candidate algorithms include compressive sampling matching pur-
suit*” and stagewise OMP.*’ These are greedy algorithms, so the result may be attained with less
time than when using FISTA.

Finally, additional gains in reconstruction quality may be had by either replacing the curvelet
sparsifier with wave-atoms*'*> or hexagonal wavelets,” or by augmenting the redundant dic-
tionary with these sets. We expect these gains to be small, and so their usage would depend on
the computational power available and the importance of fine details.

We leave all of these prospects as future work.

6 Compliance with Ethical Standards

All procedures performed in studies involving human participants were in accordance with
the ethical standards of the institutional and/or national research committee and with the 1964
Helsinki declaration and its later amendments or comparable ethical standards. MR data of
humans were gathered with IRB approval and HIPAA compliance. Informed consent was
obtained from all individual participants included in the study.
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