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A B S T R A C T   

The non-uniform Discrete Fourier Transform algorithm has shown great utility for reconstructing images from 
non-uniformly spaced Fourier samples in several imaging modalities. Due to the non-uniform spacing, some 
correction for the variable density of the samples must be made. Common methods for generating density 
compensation values are either sub-optimal or only consider a finite set of points in the optimization. This 
manuscript presents an algorithm for generating density compensation values from a set of Fourier samples that 
takes into account the point spread function over an entire rectangular region in the image domain. We show that 
the reconstructed images using the density compensation values of this method are of superior quality when 
compared to other standard methods. Results are shown with a numerical phantom and with magnetic resonance 
images of the abdomen and the knee.   

1. Introduction 

In several imaging modalities including Magnetic Resonance Imag
ing (MRI) [1], Computed Tomography (CT) [2], Spectral Domain Op
tical Coherence Tomography (SD-OCT) [3], and radio astronomy [4], a 
formalism exists to represent the collected data as samples in the Fourier 
domain. When the samples are unique and located on a Cartesian grid, e. 
g. spin-warp imaging with MRI, then the image can be reconstructed 
with the inverse Discrete Fourier Transform (DFT). However, when the 
samples are not located on a uniform grid, a non-uniform DFT must be 
used; this is a problem of type I, as defined in [5]: a discrete conversion 
from a non-Cartesian sample set in the Fourier domain to a Cartesian 
sample set in the space domain). 

When the Fourier values do not lie on a uniform grid, one must 
compensate for the varying density of samples. Effectively, the density 

compensation values determine the point spread function of the non- 
uniform transformation. Several methods have been proposed to 
determine density compensation values.2 A thorough review of existing 
techniques is presented in [6]. The most intuitive method is to calculate 
the Voronoi cell of each point and set the density compensation values 
equal to the areas of the corresponding cells (with some exception made 
for the points on the convex hull) [7–9]. This corresponds to estimating 
the inverse Fourier transform with a Riemann sum where the partition of 
the sum is the set of Voronoi cells. This is an intuitive and computa
tionally efficient approach but is not generally optimal (i.e., it does not 
optimize a quality metric). And the density compensation value assigned 
to the outer most points is arbitrary. The methods of [10,11–15] require 
the use of a convolution kernel; notably, there is not a convolution 
kernel inherent to the Riemann summation. Moreover, these methods as 
well as that of [16] only consider a finite set of points of the point spread 
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function in the space domain; thus, there is some propensity for larger 
errors at locations that were not considered. 

In what follows, we present a density compensation algorithm for a 
general set of samples that takes into account the point spread function 
over an entire rectangular region in the space domain (rather than on a 
set of arbitrary points), and we show that the images reconstructed with 
this method are of superior quality when compared to density 
compensation values determined in other ways. Importantly, these 
density compensation weights have utility beyond an implementation of 
a non-uniform DFT; they can be used for preconditioning with iterative 
reconstruction algorithms [17] or as part of a system model in an neural 
network [18–20]. 

2. Background 

A set of samples consists of a vector of frequencies k = (k1,k2,…,kM) 
∈ ℝM×D (called the sample coordinates) and a corresponding vector of 
Fourier values at those frequencies: G = (G(k1),G(k2),…,G(kM)) ∈ ℂM. 
Here, D represents the number of dimensions of the source and desti
nation domains. Reconstruction estimates the values of g = (g(x1),g(x2), 
…,g(xN)) ∈ ℂN for a vector of space domain locations x = (x1,x2,…,xN) 
∈ ℝN×D. Here, g = F

− 1G, where the symbol F − 1 represents the inverse 
Fourier transform.3 In this manuscript, we make the assumption that the 
support of g is a subset of N = [− N1/2,N1/2] × ⋯ × [− ND/2,ND/2]. 
(Here, set multiplication represents the Cartesian cross product.) The 
rectangle N is called the field of view. If the frequencies k = (k1,…,kM) 
and coordinates x = (x1,…,xN) are equally spaced with M = N (where 
the spacings between adjacent k frequencies are inversely related to the 
spacings between adjacent x coordinates), then the image can be 
reconstructed with the inverse DFT, which can be derived as a Riemann 
sum approximation to the Fourier transform [21]. When the frequencies 
k do not lie on a uniform grid, then the inverse DFT is no longer an 
appropriate reconstruction algorithm. 

A simple (though computationally inefficient) reconstruction algo
rithm is to calculate the following sum directly [21]: 

ĝ(xn) =
∑M− 1

m=0
wm G(km)exp(i2π km⋅xn), (1)  

where, km ∈ ℝD, xn ∈ ℝD, and ⋅ represents the dot product. The elements 
of the vector w = (w1,…,wM) ∈ ℝM are called the density compensation 
values; their values can dramatically affect the quality of the recon
structed image [22]. Note that (1) can be expressed as ̂g = F − 1{GSw} =

g*sw, where * represents continuous convolution, Sw =
∑

m=0
M− 1wmδ(k −

km), δ represents the Dirac delta function, and sw = F
− 1{Sw}. 

3. Theory 

If sw ≈ δ then ĝ ≈ g. As previously stated, we further assume that g 
has compact support, which is a subset of N. In this case, sw only need 
approximate the Dirac delta function well over 2N =

∏
d=1
D [− Nd,Nd] in 

order for ĝ ≈ g, where 
∏

represents a product over a set of indices. This 
motivates our approach; we will attempt to find a density compensation 
vector w such that sw(x) ≈ δ(x) for all x ∈

∏
d=1
D [− Nd,Nd]. 

3.1. Forming the optimization problem 

Note that sw is a true function (as opposed to a distribution) and takes 
a finite value at all locations in the domain. This differs from the Dirac 
delta, which is not a function but a distribution; thus, sw could never 
equal the Dirac delta over any domain that includes 0. Our hope, then, is 
that we can find some function that approximates the Dirac delta well in 

the sense that it resembles a peak centered at the origin and integrates to 
1 [23]. 

An algorithm that integrates to 1 over 2N could yield a point spread 
function with large positive values near the origin and with large 
negative values away from the origin. The resulting point spread func
tion would not represent a delta function well. To prevent this from 
happening, we have created an optimization function that forces sw to 
approximate a dirac delta well in a subset of the domain near the origin, 
and to make its values small outside of that subset. Let η =

∏
d=1
D [− ηd/ 

2,ηd/2], a small rectangular region centered on the origin, be this subset. 
Then the density compensation values can be determined by solving the 
following optimization algorithm: 

minimize
w,r′

∫ ∫
⋯
∫

2N
exp
(

−
∑D

d=1

|xd|

γdNd

)

|sw(x) |2dx

subject to sw(0) = r
′

> 0, wm ≥ 0forallm,

and
∫ ∫

⋯
∫

η
sw(x) dx = 1.

(2) 

The objective function attempts to make the values of the point 
spread function small throughout 2N. Because the value at the origin is 
constrained to r′, and because the resulting sw function is continuous, it 
will be more difficult to make values close to the origin small than it is to 
make values distant from the origin small. The exp(−

∑
d=1
D | ⋅ |/(γdNd)) 

function is a weighting that places more emphasis on the values near the 
origin and less emphasis on those values distant from the origin. This 
weighting permits the user (through the use of the parameter γd > 0, a 
fraction of the length of the domain Nd) to trade off between some 
additional error in areas more distant from the origin for improvements 
in those values close to the origin. 

The density compensation values are constrained to be non-negative 
in order to make the interpolation process of (1) more stable. Moreover, 
the non-negativity constraint permits interpretation of the density 
compensation values as areas of an unknown partition such that (1) is a 
Riemann sum approximation of the Inverse Fourier Transform. 

3.2. Solving the optimization problem 

We now present a method for numerically solving problem (2). 
Consider the relaxed problem of (3) for an arbitrary value of r >
0 (where the integration constraint of (2) has been removed and r is not 
necessarily equal to r′): 

minimize
w

∫ ∫
⋯
∫

2N
exp
(

−
∑D

d=1

|xd|

γdNd

)

|sw(x) |2dx

subject to sw(0) = r > 0 and wm ≥ 0forallm.

(3) 

The sw(0) = r constraint of (3) sets the value of the point spread 
function at x = 0 to be r; together with the objective function the 
problem attempts to find values that yield a peak near the origin and 
small values away from the origin. However, solving problem (3) does 
not yield a point spread function that integrates to 1, which is the 
remaining requirement of a good approximation of a Dirac delta 
function. 

Problem (3) is a convex optimization problem that can be solved 
with known algorithms, as detailed in section 4. Importantly, if we find 
the solution to (3), we can find a solution to (2). 

Note that if (3) were solved with two different values of r, the effect 
would be to simply scale the determined weights. So problem (3) can be 
solved with r = 1 and then scaled to attain the solution for other values 
of r. There is a unique value of κ = 1/r′ such that the integral over η is 1: 
∫ ∫

⋯
∫

η

sκw⋆ (x)dx = 1. (4)  

3 The definitions of the Fourier Transform, the DFT, and their inverses are 
listed in Appendix A. 
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where w⋆ is the solution of problem (3). Thus, to find the density 
compensation values, one solves problem (3) with r = 1 and then scales 
the weights by κ = 1/r′ such that (4) is satisfied. The expression κ, 
derived in Appendix B, is 

κ =
∑M

j=1
wj ΠD

d=1

(
sin
(
π kj,d ηd

)

π kj,d

)

.

4. Algorithm 

In this section, we review the family of gradient projection algo
rithms that can be used to solve problem (3). We then present an algo
rithm that reduces the number of gradient computations required to 
attain a valuable solution. 

4.1. Gradient projection algorithm 

To solve problem (3) for r = 1, we convert it into a form that can be 
solved with a gradient-projection algorithm. Let f0 denote the objective 
function of the problem, and let IPr denote the indicator function of the 
probability simplex (equal to 0 when the argument is an element of the 
probability simplex and equal to infinity otherwise). Then problem (3) is 
equivalent to 

minimize
w

f0(w)+ IPr(w).

The gradient-projection algorithm requires an implementation of the 
gradient of f0, denoted ∇f0, and an implementation of the Euclidean 
projection onto the probability simplex, denoted ΠPr (which is the 
proximal operator of the corresponding indicator function [24]). We use 
the computationally efficient algorithm of Wang and Carreira-Perpinán 
for this projection operator [25]. 

The gradient of the objective function, derived in appendix Appendix 
C, is ∇f0(w) = Aw (where) 

Alj = 2
∏D

d=1

2γdNd

1 + γ2
dν2

dN2
d

[
1 − e(− 1/γd )(cos(νdNd) − γdνdNdsin(νdNd) )

]
, (5)  

and 

νd = 2π
(
kl,d − kj,d

)
.

With the above definitions, problem (3) can be solved by alternating 
between an iteration of gradient descent and a Euclidean projection onto 
the probability simplex, as shown in Alg. 1, where ΠPr represents pro
jection onto the probability simplex. 

Algorithm 1. Gradient-Projection. 

Here, K is the number of iterations and μ is the step size of gradient 
descent. For reference, we call the results of this algorithm (and its 
variants) applied to problem (2) the Gradient Projection (GP) density 
compensation values. 

Rather than using gradient-projection, we use the fast iterative 

Fig. 1. Accurate images for data analyzed in this manuscript. (a) A numerical phantom consisting of the sum of a separable tri function, a circ function, and two 
separable stretched rect functions, each translated from the origin. (b) Slice 6 of the Double Vision dataset from the 2010 reconstruction challenge of the ISMRM. (c) 
A slice of a knee acquired from mridata.org. The white box in (b) shows a region zoomed into when presenting the results in Fig. 4. 

Fig. 2. Subsets of the sample coordinates used for the data of Fig. 1. Sub-image (a) shows every 6th radial line for the radial sample set used with the numerical 
phantom Fig. 1a. Sub-image (b) shows 1 of the eight spiral interleaves from the sample set used with Fig. 1b. Sub-image (c) shows one cycle of the rosette trajectory 
used with Fig. 1c. 
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shrinkage threshold algorithm (FISTA) [26]. To improve the speed 
further still, we used an adaptive restart algorithm based on the gradient 
[27]. In addition to limiting the maximum number of optimization it
erations, we also incorporated a dynamic stopping criteria based on the 
relative difference between successive results. The complete algorithm is 
presented in Alg. 2. For this algorithm, ⋅ represents the dot product, δ 
represents the relative difference, and G represents the generalized 
gradient scaled by μ. 

Algorithm 2. FISTA with Adaptive Restart. 

5. Experiments 

We present results for three experiments with two-dimensional data: 
(1) a numerical phantom, (2) multi-coil magnetic resonance (MR) data 
from the 2010 reconstruction challenge of the International Society of 
Magnetic Resonance in Medicine (ISMRM) [28], and (3) MR data of a 
slice of a knee from mriData [29]. Fourier domain data was normalized 
to lie in the [− 0.5,0.5]2 square. The true images can be seen in Fig. 1. To 
reconstruct the image once the density compensation values were 
determined, rather than calculating the sum of (1) directly, we use the 
more efficient algorithm of [2,11,30] with a Kaiser-Bessel kernel and an 
oversampling ratio of 1.5. Unless otherwise specified, the value of γ used 
with the gradient projection algorithm was 0.25% of the size of the 
image; this value was chosen to ensure that there was significant 
weighting near the center of the point spread function and to ensure that 
the weightings near the boundary of 2N were non-negligible. For all 
experiments, η was set to 5% of the length of the side of the image 
(approximately 15 pixels) and δthresh was set to 10− 4. The sizes of the 
images of the phantom, the abdomen, and the knee were, 208 × 208, 
190 × 305, and 300 × 270, respectively. Correspondingly, the values of 
(γ1N1,γ2N2) were (52,52), (47.5,76.25), and (75,67.5) pixels, respec
tively. For the gradient projection algorithm, the values of x(0) are 
initialized to the result of the Voronoi algorithm, the value of ‖A‖ is 
estimated using power iteration, and the initial step size of the 

optimization algorithm is set to 0.99/ ‖ A‖. 
The numerical phantom, shown in Fig. 1a, consists of a separable tri 

function, a circ function, and two separable scaled rect functions, all 
offset from the center and summed together. The Fourier values of this 
phantom are known. (The Fourier transform of a tri function is sinc2, the 
Fourier transform of a circ is a jinc, and the Fourier transform of a rect is 
a sinc. When these facts are combined with the Fourier shift and scaling 
theorems, the Fourier values of the numerical phantom can be deter
mined analytically.) The sample coordinates used with this phantom are 
radial with 360 spokes, 150 points per spoke. An image of every sixth 
spoke from this sample set is shown in Fig. 2a. 

The image shown in Fig. 1b consists of an axial slice of an abdomen 
with an 8 coil acquisition from the 2010 reconstruction challenge of the 
International Society of Magnetic Resonance in Medicine [28]. (Slice 6 
of the 12 slice acquisition is used in this manuscript.) The method of 
Roemer et al. is used to combine the individual images of each coil into a 
single image for display [31]. The spiral trajectory created by Craig 
Meyer for the challenge was used, which consists of 8 spiral interleaves 
with 19 revolutions per interleave. However, to increase the difficulty of 
attaining a quality solution and better show the differences between the 
density compensation weights determined, only every 5th sample of the 
readout was retained for a total of 4000 points per interleave. A single 
interleave of this set of sample coordinates is shown in Fig. 2b. 

The image shown in Fig. 1c consists of a sagittal slice of a knee ac
quired from mridata.org. The coordinates of the sample set used for 
analysis consists of 30 evenly spaced rotations of the the rosette tra
jectory [32,33] with an inner frequency of 17 cycles and an outer fre
quency of 30 cycles. Fig. 2c shows the Rosette trajectory that gets 
rotated. 

For the images of the abdomen and the knee, a type II non-uniform 
DFT (where the input is a set of Fourier values that do not lie on a 
Cartesian grid and the output is a set of space-domain values that do lie 
on a Cartesian grid) was used to estimate the Fourier values given the 
images [34]. In the case of the abdomen, the type II non-uniform DFT 
was applied to the image from each coil separately. 

Images were reconstructed with density compensation values 
determined using the Voronoi cell based algorithm of [8], the fixed point 
(FP) algorithm of [10,12] with a Kaiser-Bessel kernel, the LSQR algo
rithm of [35], and the proposed gradient projection (GP) algorithm. For 
FP, the kernel was normalized so that it integrates to 1 in order to scale 
the reconstructed image correctly. The mean square error (MSE) metric 
and the structural similarity metric (SSIM) were calculated for the dif
ference between the reconstruction and the true image. All code was 
written in Matlab R2019b and computations were performed by a 16- 
core 2019 Mac Pro with 112 gigabytes of memory. The creation of the 
A matrix for the GP method and the C matrix for the Fixed point and 
LSQR methods were each parallelized across 30 workers. 

6. Results 

Figs. 3–5 show magnitude reconstructions for the phantom, the 
abdomen, and the knee, respectively. In Fig. 3, the top row shows the 
reconstructions of each algorithm and the bottom row shows the error 
image in decibels. All reconstruction algorithms generated the most 
significant errors at the edges of the circ and rect functions. Overall, the 
GP algorithm has less error than the other methods, as evidenced by the 
dark regions in the difference image. The MSE and SSIM values are re
ported in Table 1. 

Fig. 4 shows results for the abdomen. The top row shows the 
reconstructed images, the middle row shows a region centered near the 
left kidney zoomed into the white rectangle shown in Fig. 1b, and the 
bottom row shows the difference images. As with the numerical phan
tom, there are regions of the image with less error when using GP than 
when using the competing algorithms. The FP reconstruction yields an 
image that is too bright. Additionally, it alters the contrast of the image 
significantly, making regions of the center of the image much brighter 
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Fig. 3. Reconstructions of the phantom with the radial trajectory depicted in Fig. 2(a) and with density compensation values determine using (left) the areas of 
Voronoi cells, (center) the fixed-point iteration algorithm, and (right) the gradient projection algorithm. The first row shows the reconstructed images, the second 
row shows the error of each pixel in decibels. The gradient projection algorithm has lower error in more portions of the image than the other techniques. 

Fig. 4. Reconstructions of the abdomen with the 
spiral trajectory depicted in Fig. 2(b) and density 
compensation values determine using (left) the 
areas of Voronoi cells, (center) the fixed-point 
iteration algorithm, and (right) the gradient pro
jection algorithm. The first row shows the recon
structed images, the second row shows a zoomed 
into a portion of the image centered on the left 
kidney indicated by the white rectangle shown in 
Fig. 1b, and the third row shows the error of each 
pixel in decibels. The gradient projection algo
rithm has lower error in more portions of the 
image than the other techniques.   

Fig. 5. Reconstructions of the knee with the rosette trajectory depicted in Fig. 2(c) and a density compensation values determine using (left) the areas of Voronoi 
cells, (center) the fixed-point iteration algorithm, and (right) the gradient projection algorithm. The first row shows the reconstructed images (each individually 
scaled) and the second row shows the error of each pixel on a logarithmic scale. The gradient projection algorithm has lower error than the other techniques. 
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than the true image. In the zoomed-in images, note that there is an 
erroneous high frequency block pattern super-imposed on the recon
struction with the Voronoi cell based weights that is significantly 
reduced in the GP reconstruction. 

Fig. 5 shows the reconstructions of the knee with the rosette trajec
tory of Fig. 2(c). The Voronoi and GP methods present the lowest errors, 
with the GP method presenting a slightly lower error than that of Vor
onoi. The FP and LSQR methods present significantly higher error. This 
is likely due to the scaling of the convolution kernel employed with these 
methods. Without explicitly constraining the point spread function to 
mimic a delta function, as is done with GP, the scaling of the point 
spread function is a result of the convolution kernel chosen. This leads to 
the errors depicted in the FP and LSQR reconstructions. 

Table 1 shows the mean square error, the structural similarity metric 

[36], and the runtimes for generating the density compensation values. 
In all cases, GP yields the lowest (best) mean square error and the 
highest (best) structural similarity value. The Voronoi method is the 
fastest method. The GP method takes dramatically longer the other 
methods. 

Fig. 6 shows the density compensation values determined when γ1 =

γ2 = 0.25 for each of the four methods (Voronoi, fixed point, LSQR, and 
gradient projection) for the results presented in Table 1. Notably, the 
Voronoi method includes some values that are very high. While the 
values of those sampling points on the interior of the sampling pattern 
are defined with the Voronoi method, the values for those points on the 
convex hull are not defined as an area of a Voronoi cell. In the method of 
[8], utilized in this work, the values for those points are determined 
according to a heuristic method, and that method yields values that are 
very high. This may partially explain the high frequency artifacts that 
accompany the Voronoi method. 

The value of γ = γ1 = γ2 was chosen empirically. Fig. 7 shows how the 
reconstruction of the knee with density compensation values deter
mined using GP changes as the value of γ changes between 01. to 0.4. 
Table 2 shows how the mean square error and the structural similarity 
metric change with as the value of γ changes for all the data studied. The 
effect is minor, which indicates that the density compensation values 
determined are not sensitive to changes in γ. 

It is often the case that the overall scale of the image is irrelevant; e. 
g., this is the case with MRI. We scaled the intensities of the recon
struction of the abdomen with each algorithm from 0.1 to 1.5 in steps of 
0.1 and found the scaling that minimized the mean squared error. Fig. 8 
shows the reconstructions of the best scaling along with the corre
sponding error images. Table 3 shows the Mean Squared Error (MSE), 
Mean Absolute Error (MAE), and the SSIM for each reconstruction. 
Much of the error was eliminated, especially for the LSQR algorithm. 

Table 1 
Mean square error and structural similarity metric of each reconstruction.   

Voronoi Fixed Point LSQR Gradient Projection 

Mean Square Error 
Phantom 0.028 0.15 0.45 0.024 
Abdomen 0.0010 0.079 0.034 0.00067 
Knee 0.0026 0.062 0.110 0.0011  

Structural Similarity Metric 
Phantom 0.986 0.937 0.863 0.988 
Abdomen 0.985 0.644 0.730 0.991 
Knee 0.962 0.594 0.423 0.984  

Runtime (seconds) 
Phantom 1.1 10.8 6.1 586 
Abdomen 3.6 1.7 1.3 190 
Knee 1.9 1.4 1.1 775  

Fig. 6. Density compensation values determined when γ = 0.25 using the Voronoi, Fixed Point, LSQR, and Gradient-Projection algorithms for the (left) numerical 
phantom with radial trajectory, (center) abdomen with spiral trajectory, and (right) knee with rosette trajectory. 

Fig. 7. (Top) reconstructions and (Bottom) error (in decibels) for the knee for γ = γ1 = γ2 equal to 0.1, 0.2, 0.25, 0.25, 0.3 and 0.4.  
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Even in this case, though, the error metrics show that the GP algorithm 
yields the image with the best error metrics. The error images show 
significantly more structure in the Voronoi, FP, and LSQR re
constructions; e.g., the kidneys are clearly visible in the error images. 
The error image for the GP algorithm does not obviously reveal any 
anatomical structure. 

7. Discussion 

The results show that the quality of the reconstruction is improved 
when the gradient projection method is used to determine the density 
compensation values, as opposed to the Voronoi method or the fixed 
point method. As previously stated, the density compensation values of 
the points that lie on the convex hull of the sample coordinates are 
arbitrary with Voronoi. This may lead to the high frequency noise 
observed in Fig. 4. The fixed point method is not, generally, guaranteed 
to converge to a set of values. Since there is no constraint, the values may 
increase to large magnitudes due to instabilities. Early stopping of 8 
iterations is employed to prevent this from happening. However, this 
would yield sub-optimal values. This, along with the scaling ambiguity 
of the convolution kernel, may explain the significantly higher error of 
the fixed point iteration observed in Fig. 4b. 

The gradient projection algorithm proposed is more computationally 
intensive than either of the others. The maximum number of iterations 
for the GP algorithm was limited to 250, but the dynamic stopping 
criteria based on the relative difference tends to prevent the maximum 
number from being reached, though it still conducts many more itera
tions than 8 (always over 100). Despite the long runtime, the gradient 
projection method is useful for systems where the sample coordinates 
are known prior to imaging (e.g., MRI or CT), or where the time required 
to collect the data is so long that the computation time is negligible in 
comparison (e.g., radio astronomy). If the sample coordinates are 
known, then the density compensation values can be computed prior to 
imaging and stored for future use. In this case, the time required to 
determine the density compensation values does not alter the time be
tween data acquisition and reconstruction. If the acquisition time is so 
long that the computation time is negligible in comparison (as is often 
the case with radio astronomy), then perhaps the gradient projection 
method is appropriate to get the highest quality image possible from a 

reconstruction. Finally, the runtimes presented were from an imple
mentation in Matlab, an interpreted language. If speed is greatly desired, 
the GP algorithm can be implemented in a compiled language and/or 
run on specialized hardware (e.g., a Graphics Processing Unit). 

The algorithm, as presented, requires that the image have compact 
support. For many applications, this assumption is met due to the limits 
of the sensing equipment. For example, with CT, the image must be of a 
person that fits within the machine. With MRI, the antennas have 
negligible sensitivity outside of the machine (and therefore the images 
that are reconstructed have compact support. 

Aside from reconstructing the image directly for viewing, the result 
can be used to initialize an iterative model based reconstruction algo
rithm [37,38] such as compressed sensing [39–41]. This is especially 
important for non-convex model based reconstruction algorithms, such 
as ENLIVE [42] or MCCS [43], since a initial guess closer to truth re
duces the probability of yielding a final answer from an erroneous local 
minima. Finally, the density compensation weights can also be used for 
pre-conditioning with iterative reconstruction algorithms that include 
regularization [17]. When used for this purpose, they can actually 
reduce the time between data collection and reconstruction. 

Though results are shown for two-dimensional data, the straight
forward modification to three-dimensional data may be useful for non- 
Cartesian three-dimensional MRI datasets where the trajectories do 
not lie in a single plane, such as cones [44,45] or yarn ball [46]. 

Though this approach has been demonstrated on non-uniform 
discrete Fourier transform problems of type I, it may be more general. 
The approach may be valid for problems of type III, where the points of 
both the source and the destination domain do not lie on a uniform grid. 
This possibility comes from the fact that a discrete set of points in the 
destination domain was never used when determining the density 
compensation values. The relevant change may simply be to alter the set 
{xn : n = 1,2,…,N} where the summation of (1) is calculated. 

8. Conclusions 

In this work, we present a method to determine the density 
compensation values of the non-uniform DFT of type I. The method for 
determining the density compensation values results from an optimi
zation problem that optimizes over a domain equal to twice the field of 
view of the object to be imaged. Though the problem is non-convex, we 
present a method to solve the problem that scales the results of a convex 
optimization problem, which can be solved with known algorithms. 

Table 2 
Mean square error and structural similarity metric for different values of γ.  

γ 0.1 0.2 0.25 0.3 0.4 ∞ 

Mean Square Error 
Phantom 0.026 0.024 0.024 0.023 0.024 0.021 
Abdomen 0.0011 0.0007 0.0007 0.0006 0.0005 0.0022 
Knee 0.0020 0.0013 0.0011 0.0009 0.0008 0.0014  

Structural Similarity Metric 
Phantom 0.986 0.987 0.988 0.988 0.988 0.989 
Abdomen 0.983 0.990 0.991 0.991 0.992 0.952 
Knee 0.972 0.984 0.982 0.985 0.984 0.950  

Fig. 8. Reconstructions of the abdomen after scaling the image intensities to minimize the MSE.  

Table 3 
Error Metrics for Reconstructions of the Abdomen after Scaling the Intensities.   

Voronoi Fixed Point LSQR Gradient Projection 

Best Scaling 0.9 0.5 0.6 1.0 
MSE (×10− 3) 1.0 6.7 0.8 0.7 
MAE (×10− 2) 2.6 7.0 2.3 2.1 
SSIM 0.985 0.88 0.988 0.991  
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Appendix A. Fourier transform definitions 

For this document, the Fourier Transform and Inverse Fourier Transform are defined as 

F(k) = F {f}(k) =
∫ ∞

− ∞
f (x)exp( − i2π kx)dx,

f (x) = F
− 1{F}(x) =

∫ ∞

− ∞
F(k)exp(i2π kx)dk.

The DFT and Inverse DFT are defined as 

V[m] = DFT(v)[m] =
∑N− 1

n=0
v[n]exp

(
− i2π mn

N

)
,

v[n] = DFT− 1(V)[n] =
1
N
∑M− 1

m=0
V[n]exp

(
i2π mn

N

)
.

Appendix B. Expression for scaling 

Here we derive the expression the scalar multiple that satisfies constraint (4) as explained in section 3. Let w̃ be the solution to problem (3) when r 
= 1. Starting from constraint (4), 

1 =

∫ ∫

⋯
∫

η

sw⋆ (x)dx =

∫ ∫

⋯
∫

η

r′ sw̃(x)dx

= r
′

∫ ∫

⋯
∫

η

∑M

j=1
w̃jexp

(
− i2πkj⋅x

)
dx

= r
′
∑M

j=1
w̃j

∏D

d=1

∫ ηd/2

− ηd/2
exp
(
− i2πkj,dxd

)
dxd.

Therefore, κ = 1

/

r′

=
∑M

j=1
w̃j

∏D

d=1

(
sin
(
πkj,dηd

)

πkj,d

)

.

Appendix C. Gradient of the Objective function 

Consider the objective function f0(w) =
∫

⋯
∫

2N h(x,w) dx, where 

h(x,w) = exp

(

−
∑D

d=1

|xd|

γdNd

)

|sw(x) |2 = exp

(

−
∑D

d=1

|xd|

γdNd

)

sw(x) ¯sw(x).

Here, ̄⋅ denotes the complex conjugate. Then ∇f0(w) =
∫

⋯
∫

2N ∇wh(x,w)dx. By the product rule of differentiation, 

∂
∂wl

h(x,w) = exp

(

−
∑D

d=1

|xd|

γdNd

)[(
∂

∂wl
sw(x)

)

( ¯sw(x) ) + (sw(x) )
(

∂
∂wl

¯sw(x)
)]

= exp

(

−
∑D

d=1

|xd|

γdNd

)[
∑M

j=1
wj exp

(
i2π
(
kj − kl

)
⋅x
)
+
∑M

j=1
wj exp

(
− i2π

(
kj − kl

)
⋅x
)
]

= 2exp

(

−
∑D

d=1

|xd|

γdNd

)
∑M

j=1
cos
(
2π
(
kj − kl

)
⋅x
)
.

With this expression, we can now find an analogous expression the partial derivative of the objective function: 

∂
∂wl

f0(w) = 2
∑M

j=1
wj

∫ ∫

⋯
∫

2N

cos
(
2π
(
kj − kl

)
⋅x
)
exp

(

−
∑D

d=1

|xd|

γdNd

)

dx = al⋅w,
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where al is the vector such that the jth component is 

alj = 2
∫ ∫

⋯
∫

2N
cos
(
2π
(
kj − kl

)
⋅x
)
exp

(

−
∑D

d=1

|xd|

γdNd

)

dx.

We are left to determine al: 

alj = exp
(

−
∑D

d=1

|xd|

γdNd

)∫ ∫

⋯
∫

2N

exp
(
i2π
(
kj − kl

)
⋅x
)
dx

+exp
(

−
∑D

d=1

|xd|

γdNd

)∫ ∫

⋯
∫

2N

exp
(
− i2π

(
kj − kl

)
⋅x
)
dx

=
∏D

d=1

∫ Nd

− Nd

exp
(

i2π
(
kj,d − kl,d

)
xd −

|xd|

γdNd

)

dxd

+
∏D

d=1

∫ Nd

− Nd

exp
(

− i2π
(
kj,d − kl,d

)
xd −

|xd|

γdNd

)

dxd

= 2Real
{
∏D

d=1

∫ Nd

− Nd

exp
(

i2π
(
kj,d − kl,d

)
xd −

|xd|

γdNd

)

dxd

}

.

Consider 

td =

∫ Nd

− Nd

exp
(
i2π
(
kj,d − kl,d

)
xd − |xd|/(γdNd)

)
dxd.

If kj, d = kl, d, then td = 2γdNd (1 − exp (1 − 1/γd)). Otherwise, 

td =

∫ Nd

0
exp
(

i2π
(
kl,d − kj,d

)
xd −

xd

γdNd

)

+

∫ 0

− Nd

exp
(

i2π
(
kl,d − kj,d

)
xd +

xd

γdNd

)

=
1

iνd − 1/(γdNd)
exp(iνdNd − 1/γd) −

1
iνd − 1/(γdNd)

+
1

iνd + 1/(γdNd)

−
1

iνd + 1/(γdNd)
exp
(
− iνdNd − N2

d γd
)

= 2Real

{
− 1/(γdNd) − iνd

(1/(γdNd) )
2
+ ν2

d

exp(iνdNd − 1/γd) +
1/(γdNd) − iνd

(1/(γdNd) )
2
+ ν2

d

}

=
2

(
1 + γ2

dN2
d ν2

d

)
[
exp( − 1/γd)

(
− γdNdcos(νd Nd) + γ2

dN2
d νdsin(νd Nd)

)
+ γdNd

]
,

where νd = 2π(kl, d − kj, d). 
Therefore, al, j = 2

∏
d=1
D td where td = 2γdNd (1 − exp (− 1/γd)) if kj, d = kl, d and otherwise, 

td =
2

1 + γ2
dN2

d ν2
d

[
exp( − 1/γd)

(
− γdNdcos(νdNd)+ γ2

dN2
d νdsin(νNd)

)
+ γdNd

]

With this expression of al, (∂/∂wl) f0(w) = al ⋅ w. Let A be the matrix such that the lth row of A is al. Then ∇f0(w) = Aw. 
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